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ABSTRACT. The aim of this paper is to describe efficient algorithms for computing Maass waveforms on
subgroups of the modular group PSL(2,Z) with general multiplier systems and real weight. A selection of
numerical results obtained with these algorithms is also presented. Certain operators acting on the spaces of
interest are also discussed. The specific phenomena that were investigated include the Shimura correspon-
dence for Maass waveforms and the behavior of the weight-k Laplace spectra for the modular surface as the
weight approaches 0.

1. INTRODUCTION AND NOTATION

The purpose of the present paper is to present computational methods and experimental results for
general real weight and general multiplier systems.

The classical theory of holomorphic automorphic forms was developed in the setting of (even) integer
weight. This was motivated both from a geometrical point of view and by number theoretical applications
(e.g. the study of modular forms related to the modular invariant j and the discriminant ∆). The problem
of finding the number of representations of an integer as a sum of a fixed number of squares (cf. e.g. [45]
and [19]) was successfully treated by using the theory of half-integral weight forms (e.g. θ-series). This
motivated Petersson to develop a theory of automorphic forms and multiplier systems of arbitrary real
weight [52] and later also complex weight [54, I-IV].

Many applications of modular forms use Hecke operators as a principal tool and Wohlfahrt developed
a theory of Hecke-like operators in arbitrary real weight [76] (cf. also [70]) .

Now recall the definition of a Maass waveform as a real-analytic square-integrable eigenfunction of
the Laplacian on a Riemann surface of finite volume with constant negative curvature −1. These were
introduced by Maass for zero weight in [40]. In [41] the theory of waveforms for general weights was
developed by using the so called lowering and raising operators, which send a waveform of a given weight
to one with a smaller or larger weight.

In a slightly different setting Selberg [58, pp. 82–83] observed that considering the invariant differ-
ential operators on the space H× S1 with representation χ and separating variables lead to real analytic
eigenfunctions of the form f (z,φ) = y

k
2 F (z)e−ikφ where F (z) is a holomorphic modular form of integer

weight k and character χ.
For an overview of the spectral theory of real analytic modular forms with arbitrary real weights and

multiplier systems see e.g. Maass [42] and Roelcke [56]. More recent work can be found in e.g. [49, 50,
51], [22, 23] and [8, 9, 10].

It is also worth mentioning that the recent interest in Maass waveforms as representative objects for
studying quantum chaos also applies to real weights. If a weight zero waveform corresponds to a quantum
mechanical particle moving freely on a Riemann surface then a weight k waveform represents a similar
particle moving in a constant magnetic field with field strength proportional to k.

Date: 2006–11–3.
2000 Mathematics Subject Classification. Primary 11-04; Secondary 411F72, 11F37.
Key words and phrases. Maass waveforms, Multiplier systems, Computational spectral theory, Shimura correspondence, Hecke

operators.
1



2 FREDRIK STRÖMBERG

1.1. Algorithms
Previously published algorithms for computing Maass waveforms on cofinite Fuchsian groups have

been restricted to groups with one cusp, e.g. the full modular group or Hecke triangle groups (see e.g. [63,
75, 25, 26, 27, 46]). By adjoining certain elements it is also possible to bring certain Hecke congruence
subgroups to the one-cusp case, cf. e.g. [16, 17, 4].

In addition, with the exception of the (somewhat crude) computations in [46], only trivial multiplier
system and zero (or even integer for the holomorphic case in [26]) weight has been considered.

The most stable of the algorithms cited above is the one based on “implicit automorphy” by Hejhal
(as detailed in e.g. [27]) which admits generalizations first of all to remarkably large spectral parameter
(cf. [69]) and a further advantage is that it does not depend on any underlying arithmetical properties (i.e.
Hecke operators).

In [65] this algorithm was generalized to groups with several cusps, e.g. Hecke congruence subgroups
Γ0(N) with non-trivial Dirichlet characters and in and [64, ch. 3] we also considered general subgroups
of the modular group. Recently, in [6], this algorithm in combination with other theoretical methods was
used to show the existence of certain Maass waveforms close to the tentative waveforms produced by the
algorithm.

The aim of the present paper (which is based on [64, ch. 2]) is to demonstrate how to extend the
algorithm to general multiplier systems and arbitrary real weights.

The first section contains a brief review of the basic theory of multiplier systems and then we will in-
troduce the notion of Maass waveforms in this context. We will also provide some details on the different
operators that act on the space of Maass waveforms with non-trivial multiplier system. While being of
interest in themselves, these operators can also be used in combination with other tests of reliability and
accuracy of the algorithm.

In section 7 we will give the specifics of how the algorithm is modified and in the last section we
present a selection of the results which has been obtained with the described method.
1.2. Summary of notation

We will use the notation e(x) = e2πix and for a complex number z we always use the principal branch
of the argument, −π < Argz ≤ π.

Let H = {z = x+ iy |y > 0} be the upper half-plane equipped with the hyperbolic line- and area-

elements ds2 = |dz|2
y2 and dµ = dxdy

y2 respectively. The boundary of H is ∂H = R∪{∞}. The isometry
group of H is identified with PGL(2,R) = GL(2,R)/{±Id}, where GL(2,R) is the group of invertible
two-by-two matrices with real elements and Id =

(
1 0
0 1

)
. For γ =

(
a b
c d

)
∈ GL(2,R) and z ∈ H we define

an action by

γz =


az+b
cz+d , if ad−bc > 0,

az+b
cz+d , if ad−bc < 0.

The subgroup of orientation-preserving isometries of H is given by PSL(2,R) = SL(2,R)/{±Id} where
SL(2,R) is the subgroup of GL(2,R) consisting of matrices with determinant 1. For any subgroup Γ ⊆
PGL(2,R), we use Γ to denote the inverse image of Γ in GL(2,R). Note that this forces −Id ∈ Γ. We
are mainly interested in Fuchsian groups, i.e. discrete subgroups of PSL(2,R). Of particular interest
is the subgroup consisting of matrices with integer entries, the modular group, PSL(2,Z). We are also
interested in the so-called Hecke congruence subgroups, Γ0(N) =

{(
a b
c d

)
∈ PSL(2,Z) |c ≡ 0 mod N

}
,

defined for any positive integer N (note that Γ0(1) = PSL(2,Z)).
We say that an element γ of PSL(2,R) is elliptic, parabolic or hyperbolic if the absolute value of the

trace of the associated matrix is smaller than, equal to or greater than 2 respectively, or equivalently, if
γ has one fixed point in H, one (double) fixed point in ∂H or two (different) fixed points in ∂H. Fixed
points of parabolic elements are called cusps.
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If Γ⊂ PSL(2,R) is a finitely generated Fuchsian group we identify the set of Γ-orbits with a connected
subset of H, F =Γ\H, a fundamental domain of Γ. If Γ has a set p1, . . . , pκ of inequivalent cusps then
the set F will meet ∂H at κ inequivalent points which we will also denote by p1, . . . , pκ and we usually
abuse the notation and call these points the cusps of Γ (or of F ). By conjugation we may always assume
p1 = i∞. Corresponding to a cusp p j of Γ we use S j to denote a parabolic generator of Γp j - the subgroup
of Γ which fixes p j. We also choose a cusp normalizer, σ j ∈PSL(2,R), with the property that σ j (∞) = p j

and σ jSσ
−1
j = S j, where S =

(
1 1
0 1

)
is the parabolic generator of PSL(2,Z) (the other generator being

T =
(

0 −1
1 0

)
. The map σ j is uniquely determined up to a translation Sk. If F meet ∂H at the points qi,

1 ≤ j ≤ κ0 we fix a set of maps Ui ∈ Γ such that Uiqi = p j where p j is the unique cusp equivalent to qi.

2. MULTIPLIER SYSTEMS

2.1. Introduction
We will give a brief introduction to multiplier systems, for more extensive treatments see [22, pp.

331-338], [53], or [55, pp. 70-87].
Let Γ be a Fuchsian group and m an even integer. Classically, a function ϕ, meromorphic on the upper

half-plane H, which satisfies

(2.1) ϕ(Az) = ΘA(z;m)ϕ(z) = (cz+d)m
ϕ(z), ∀A =

(
a b
c d

)
∈ Γ,

is called an automorphic form of weight m for Γ. The function

ΘA(z;m) = (cz+d)m , A =
(

a b
c d

)
∈ Γ

is said to be an automorphy factor on Γ. The classical theory of automorphic forms is well-known; for
instance, if m = 2, then the automorphic forms can be identified with the meromorphic differential forms
of degree 1 on the orbifold (classical Riemann surface) Γ\H.

We observe that, for even m, the number (cz + d)m is uniquely defined and the automorphy factor
ΘA(z;m) in (2.1) clearly satisfies

(*) ΘA(Bz;m)ΘB(z;m) = ΘAB(z;m).

To generalize these notions to arbitrary real m, there needs to be a choice of branch of the argument,
and to make certain everything is well-defined, we have to introduce the notion of a multiplier system.

Definition 2.1. For any real number m define

jA(z;m) = eimArg(cz+d) =
(cz+d)m

|cz+d|m
=
(

cz+d
cz+d

)m
2
, A =

(
a b
c d

)
∈ SL(2,R).

To adapt the relation (*), we also write

(2.2) σm(A,B) = jA(Bz;m) jB(z;m) jAB(z;m)−1.

It is clear that for integer m, σm(A,B) = 1, but it can also be shown (cf. [53, §2, pp. 42–50]) that the only
values which σm can take are 1 and e±2πim.

Definition 2.2. v : Γ → S1 = {z | |z|= 1} is said to be a multiplier system of weight m on Γ if
• v(−I) = e−πim, and
• v(AB) = σm(A,B)v(A)v(B), ∀A,B ∈ Γ.

Observe that v can be regarded equally well as a multiplier system of any weight m′ ≡ m mod 2. The
question of whether there exist multiplier systems of a given weight and on a given group is most easily
answered by the following proposition (cf. [22, Prop. 2.1, p. 333]).

Proposition 2.3. Given v : Γ → S1 and m ∈ R. The following are equivalent:
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• v(T ) is a multiplier system of weight m on Γ.
• There exists a function ϕ 6≡ 0 on H which is either C∞ or meromorphic such that

ϕ(Az) = v(A)ϕ(z)(cz+d)m, ∀A =
(

a b
c d

)
∈ Γ.

A ϕ as above is said to be an automorphic form of weight m and multiplier system v on Γ.

Definition 2.4. Given a multiplier system v on Γ and an element α ∈ GL(2,R) we define a multiplier
system, vα, on the group α−1Γα by

vα(A) = v
(
αAα

−1) σm
(
αAα−1,α

)
σm (α,A)

, A ∈ α
−1

Γα.

That this indeed gives a multiplier system on α−1Γα is shown in [42, p. 138].

Using Prop. 2.3, we will construct the two most widely used multiplier systems in the following
sections. Compare: [22, pp. 334-337].
2.2. The η multiplier system
2.2.1. The η-function. The Dedekind η−function is a holomorphic function on H, defined by

η(z) = e
( z

24

) ∞

∏
n=1

(1− e(nz)) .

It is clear from the definition that η(z) 6= 0 for z ∈ H and that, for each k ∈ R, η2k can be defined as a
holomorphic function on H. (Cf. [55, p. 205].) Note that η(z)24 is the famous Discriminant function
∆(z). Cf. [55, pp. 196-197]. It is clear that η(z+1) = e

( 1
24

)
and as for ∆(z) it is also possible to express

η(z) as a lacunary Fourier series (cf. [46, p. 18]).

2.2.2. The multiplier system. It can be proved (cf. Thm. 3.1 and Thm. 3.4 [1, p. 48 and p. 52]) that η

satisfies the following functional equations

η

(
−1
z

)
= (−iz)

1
2 η(z) , and in general,

η(Az) = vη(A)(cz+d)
1
2 η(z), ∀A =

(
a b
c d

)
∈ SL(2,Z).(2.3)

This functional equation expresses the fact that η is an SL(2,Z)−automorphic form of weight 1
2 and

multiplier system given by vη. Accordingly the function η2k is an SL(2,Z)-automorphic form of weight
k and multiplier system given by v2k

η , and we can use η2k in the context of Proposition 2.3 to assure the
existence of the multiplier system, vη,k = v2k

η , of weight k on SL(2,Z) (and any of its subgroups, e.g.
Γ0(N)). We have the following explicit formula for v = v2k

η :

(2.4)
1

2πi
logv

((
a b
c d

))
=
{ kb

12 , a = d = 1,c = 0,

k
( a+d−3c

12c − s(d,c)
)
, c > 0,

and for c < 0 we use that v(−A) = e−kπiv(A) (cf. Def. 2.2). Here s(d,c) is the Dedekind sum,

s(d,c) =
c−1

∑
n=1

n
c

((
dn
c

))
,

where ((x)) is the saw-tooth function

((x)) =

{
x−bxc− 1

2 , if x /∈ Z,

0, if x ∈ Z,



COMPUTATION OF MAASS WAVEFORMS WITH NON-TRIVIAL MULTIPLIER SYSTEMS 5

and bxc is the greatest integer less than or equal to x. Note that if x is not an integer, then b−xc=−bxc−1
so ((−x)) =−((x)) , and hence s(−d,c) =−s(d,c) if gcd(d,c) = 1.

Remark 2.5. It is also possible to express the eta multiplier explicitly without Dedekind sums but using
extended quadratic residue symbols instead. We have the following formulas from Knopp [31, p. 51] or
van Lint [71, Thm. 3]:

(2.5) vη

((
a b
c d

))
=

{( c
d

)
e
( 1

24

[
(a+d)c−bd

(
c2−1

)
+3d−3−3cd

])
, c > 0, even,( d

c

)
e
( 1

24

[
(a+d)c−bd

(
c2−1

)
−3c

])
, c > 0, odd.

(Note that the symbols
( c

d

)
∗ and

( d
c

)∗
of [31, 71] agree with our symbols in these two cases.)

Remark 2.6. It is known that, for each k ∈R, there exist exactly 6 different multiplier systems of weight k
on PSL(2,Z) (cf. [55, §3.4, pp. 83, 206 ] or [42, Thm. 19, p. 132]). We will denote these by v(r)

η,k = v2(k+r)
η ,

where r ∈ {0,2,4,6,8,10}. Compare [55, eq. (6.4.7)]; one knows, of course, that v24
η = 1.

When dealing with the modular group and weight k, it is sufficient to consider only the multiplier
system v(0)

η,k = vη,k = v2k
η (for reasons to be discussed later in Section 4.4.1).

2.3. The θ multiplier system
On any subgroup of PSL(2,Z), we can always use the η-multiplier system, but in general, on sub-

groups of PSL(2,Z), there are also other multiplier systems available. In particular, on Γ0(4), there is a
multiplier system of weight 1

2 which is interesting from an arithmetical point of view.
It is well-known (cf. [60] or [28]) that the Jacobi theta function

θ(z) =
∞

∑
−∞

e(n2z), z ∈H,

is automorphic on Γ0(4) with weight k = 1
2 and can be used to define a multiplier system on Γ0(4). Using

the Poisson summation formula one can prove (cf. [18, pp. 72–75] or [28, pp. 167–168]) that the theta
function satisfies:

(2.6) θ

(
−1
2z

)
= (−iz)

1
2 θ

( z
2

)
,

and one can also prove the general formula (cf. [28, Thm. 10.10, p. 177] or [60, p. 447]):

θ(Az) = vθ (A)(cz+d)
1
2 θ(z), A =

(
a b
c d

)
∈ Γ0(4).(2.7)

The multiplier vθ (A) can be expressed explicitly as

vθ (A) = ε̄d

( c
d

)
,

where εd = 1 if d ≡ 1 mod 4 and εd = i if d ≡−1 mod 4, and
( c

d

)
denotes the extended quadratic residue

symbol defined as the traditional Jacobi symbol if 0 < d ≡ 1 mod 2 and extended by( c
d

)
=

c
|c|

(
c
−d

)
, c 6= 0,

and (
0
d

)
=

{
1 if d =±1,

0 otherwise.
For the sake of completeness we also use the traditional Kronecker extension, i.e. we define

(2.8)
(

c
2

)
=
(

2
c

)
.

One can verify that our symbol
( ·
·
)

satisfies reciprocity relations similar to the usual ones:
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Proposition 2.7. Suppose that c,d ∈ Z are odd and c 6= 0. Then we have:(
−1
d

)
= (−1)(

d−1
2 ) ,

( c
d

)
=

{( d
c

)
(−1)(

d−1
2 )( c−1

2 ) , d, or c > 0,

−
( d

c

)
(−1)(

d+1
2 )( c+1

2 ) , d, and c < 0.

Remark 2.8. Relations (2.6) and (2.7) can also be proved using the corresponding relations (2.3) for η

and the following relation between the η and the θ functions (cf. [28, p. 177] or [31, Thm. 12, p. 46]):

θ(z) =
η( z+1

2 )
η(z+1) .

3. MAASS WAVEFORMS

The slash-operator f|A(z) = f (Az) can be extended to an operator of weight k as:

f|[k,A](z) = f (Az) jA(z;k)−1,

and the natural analog of the Laplace-Beltrami operator, ∆, which is invariant under this action is the
weight-k Laplacian:

∆k = ∆− iyk
∂

∂x
= y2

(
∂2

∂x2 +
∂2

∂y2

)
− iyk

∂

∂x
.

If Γ is a Fuchsian group we define the space M(Γ,v,k,λ) consisting of Maass waveforms on Γ, of weight
k, multiplier system v and eigenvalue λ, as the space of functions which satisfy the following conditions:

1) f|[A,k](z) = v(A) f (z), ∀A =
(

a b
c d

)
∈ Γ,

2) ∆k f +λ f = 0, and
3)

R
F | f |2dµ < ∞.

Observe that condition 1) is equivalent to

1’) f (Az) = v(A) jA(z;k) f (z), ∀A =
(

a b
c d

)
∈ Γ.

For purposes of the computational work to be described in this paper, we shall be content to restrict
ourselves to cases where λ > 1

4 . (Cf. also here para. 4 of sect. 8.1 below.)
Instead of the Bessel equation in the case of weight 0, condition 2) above gives us the Whittaker

equation, and using the method of separation of variables gives us Whittaker functions instead of the K-
Bessel functions at weight 0 (for complete details see [22, Chap. 9]). Since f (x+ iy) is no longer periodic
in x, but instead satisfies f (z+1) = v(S) f (z) = e(α) f (z), with α ∈ [0,1), the Fourier series of f can ([22,
pp. 26, 348, 420(19)]) be written as

f (z) =
∞

∑
−∞

n+α6=0

c(n)√
|n+α|

Wsgn(n+α) k
2 ,iR(4π|n+α|y)e((n+α)x) ,(3.1)

where Wl,µ(x) is the Whittaker function in standard notation (cf. [15, vol. I, p. 264]) and R is the usual
spectral parameter, λ = 1

4 +R2. One notes here that W0,iR(x) = π
− 1

2 x
1
2 KiR

( x
2

)
. For k = 0, the expansion

above thus reduces to usual Fourier expansion with 2y
1
2 KiR(2π|n+α|y) as in [22, p. 26, prop. 4.12].

If we have more than one cusp we define functions f j related to f at each cusp, p j, of Γ by using the
cusp normalizing maps σ j from section 1.2 and setting f j(z) = f|[σ j ,k](z) = jσ j(z;k)−1 f (σ jz). It is easy
to see that

f j(z+1) = v(S j) f j(z) = e(α j) f j(z),
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with α j ∈ [0,1) (cf. [28, p. 41]). Thus the Fourier series of f at the cusp j can be written as

f j(z) =
∞

∑
n=−∞

c j(n)√
|n+α j|

Wsgn(n+α j) k
2 ,iR(4π|n+α j|y)e((n+α j)x) .(3.2)

As in the case of weight 0 and Dirichlet character, we say that the cusp number j is open or singular if
α j = 0 and closed if α j 6= 0. If all cusps of Γ are singular for the multiplier system v we say that v is a
singular multiplier system for Γ.

Remark 3.1. Observe that, for the eta-multiplier on PSL(2,Z) and weight k, we have α = α1 = k
12 .

3.1. Decomposition of the discrete spectrum
It is known (see for example [11] or [22]) that closed cusps (i.e. v(S j) 6= 1) do not contribute to the

continuous spectrum, and if all cusps are closed there is only the discrete part of the spectrum left and
this is spanned by the Maass waveforms. We also know (see [22, p. 385]) that on the modular group with
weight k the smallest eigenvalue is

λmin =
|k|
2

(
1− |k|

2

)
,

or larger. In the case of PSL(2,Z) and k ≥ 0, F(z) = y
k
2 η(z)2k has eigenvalue equal to λmin.

In this paper, any eigenvalues λ ∈
[
λmin,

1
4

]
will be regarded as exceptional. The non-exceptional

eigenvalues thus satisfy 1
4 < λ0 ≤ λ1 ≤ ·· · ≤ λn → ∞. One can obtain lower bounds for the eigenvalue

λ0 (see [11, p. 183]), but in light of the numerical experiments in Section 8.1 they are not very effective
(cf. Figure 2).

4. OPERATORS

4.1. Conjugation and reflection
Let J and K denote the reflection, Jz = −z and conjugation, Kz = z. Then J and K act as involutions

on the space of Maass waveforms via the operations

K f = f|K(z) = f (z),

J f = f|J(z) = f (−z).

It follows from the definition of the action of GL(2,R) on H (cf. page 2) that we can use the matrix
J =

(
1 0
0 −1

)
in GL(2,R) to represent the operator J. For A =

(
a b
c d

)
we define

A∗ = JAJ−1 =
(

a −b
−c d

)
,

and then A∗∗ = A, and A(z)|K =−A∗(z), meaning that also −A(z) = A∗(−z̄).

Remark 4.1. It is easy to verify that if f ∈ M(Γ0(N),v,k,λ), then K f ∈ M(Γ0(N),v,−k,λ) and J f ∈
M(Γ0(N),v∗,−k,λ), where v∗ is the multiplier system determined by

v∗(A) = v(A∗) ·

{
1, c 6= 0,

eπik(1−sgn(d)), c = 0,
, forA =

(
a b
c d

)
.

Of particular interest is the involution obtained by combining J and K, i.e.

KJ f (z) = f|JK(z) = f (−z̄).

It is easily seen that if f has Fourier coefficients c j(n), then (by [15, p. 265(8)]) f|JK has Fourier coef-
ficients c j(n), and we thus would like to have f and f|JK belonging to the same space (i.e. transform
according to the same multiplier system), since then we can assume that the Fourier coefficients are real.



8 FREDRIK STRÖMBERG

It is clear that if f ∈ M(Γ0(N),v,k,λ), then KJ f ∈ M(Γ0(N),v∗,k,λ) so we are left to see whether
v∗ = v or not. By using the explicit formulas one can verify that indeed v∗ = v for both vθ and vη (see [64,
pp. 66-68] for details) and we arrive at the following proposition.

Proposition 4.2. If v is either the η- or the θ-multiplier system (in the latter case 4|N) then a basis
{g1, . . . ,gm} of M(Γ0(N),v,k,λ) can be chosen so that each g j can be expanded in a Fourier series at ∞

with real coefficients.

Proof. We have seen that for both the theta and the eta multiplier systems the product KJ is a conjugate-
linear involution of the space M(Γ0(N),v,k,λ), and hence we can assume that any f ∈M(Γ0(N),v,k,λ)
is an eigenfunction of KJ with eigenvalue ε, where |ε|= 1. Note that if f (z) has a Fourier series expansion
as above with Fourier coefficients c(n) then f|KJ has Fourier coefficients c(n) and hence c(n) = εc(n). Fi-

nally we observe that if ε = eiθwe can look at the function g = ei θ

2 f which then satisfies KJg = e−i θ

2 KJ f =
e−i θ

2 eiθ f = g. After proper normalization it is thus no restriction to assume that the eigenvalue of KJ is
ε = 1, and that the Fourier coefficients are real. �

Remark 4.3. For the sake of completeness it should be remarked that in general one can not simultane-
ously take Fourier coefficients at cusps other than ∞ to be real (cf. the next subsection where we introduce
the map ωN , which is a cusp normalizing map for the cusp at 0 and which has eigenvalues ±i−k).

4.2. The involution τN

As in the case of zero weight (e.g. [65]) we define ωNz = −1
Nz , or equivalently ωN =

(
0 −1√

N√
N 0

)
. We

know that ωN is an involution of Γ0(N), i.e. Γ0(N) = ωNΓ0(N)ω−1
n , but the question is how it relates to

the weight and multiplier system.
If f ∈M(Γ0(N),v,k,λ) it is easy to see that f |[k,ωN ] ∈M(Γ0(N),vωN ,k,λ), and it is also easy to verify

that vωN (T ) = v
(
ωNT ω

−1
N
)
. We also have

f|[k,ωN ]|[k,ωN ](z) = jωN (z;k)−1 f (ωNz)|[k,ωN ] = jωN (z;k)−1 jωN (ωNz;k)−1 f
(
ω

2
Nz
)

= e−ikArg(
√

Nz)e−ikArg(−1/
√

Nz) f (z) = e−iπk f (z),

and hence if we define the operator τN by

τN f (z) = eik π

2 f|[k,ωN ](z),

we have that
τ

2
N = Id.

To show that τN is a linear involution, we also have to verify that vωN = v. This is easily done in the two
cases N = 1 together with v = vη and N = 4 together with v = vθ. And we conclude:

Proposition 4.4. If N = 1 and v = vη, or N = 4 and v = vθ the operator

τN : M(Γ0(N),v,k,λ)→M(Γ0(N),v,k,λ),

defined by

τN f (z) = eik π

2 f|[k,ωN ] = e−ik(Argz− π

2 ) f
(
−1
Nz

)
,

is a linear involution, i.e. τN (a f ) = aτN f for all a ∈ C and τ2
N f = f . Hence it has eigenvalues ±1.

Remark 4.5. Note that in the case of Γ0 (4) (i.e. N = 4) if τN f (z) =± f (z), then

f2 = f|ωN = e−ik π

2 τN f =±e−ik π

2 f ,

which means that the Fourier coefficients at the cusp at 0 are proportional to the coefficients at i∞:

(4.1) c2(n) =±e−i π

2 kc1(n) =±i−kc1(n).
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4.3. The operator L
Definition 4.6. For N = 4 and the θ-multiplier system at weight 1

2 , following Kohnen [32] or Katok-
Sarnak [29] we define the operator L acting on M(Γ0(4),vθ,

1
2 ,R) by

L =
1√
2

τ4T vθ

4, 1
2
,

where T vθ

4, 1
2

is the following (exceptional) Hecke operator

(4.2) T vθ

4, 1
2

f (z) =
1
2 ∑

j mod 4
f
(

z+ j
4

)
.

Cf. Subsection 4.5.1. It can be shown that the operator L is self-adjoint, commutes with ∆ 1
2

and all Hecke

operators T vθ

p2, 1
2
, p 6= 2 (cf. (4.9)) and have the eigenvalues 1 and − 1

2 . Cf. [32] and [48]. Suppose that f (z)

has Fourier expansions à la (3.2) at the cusps p1 = ∞, p2 = 0 and p3 =− 1
2 with Fourier coefficients a j(n)

respectively. By calculations similar to [32] or [32, 5] it can be shown that L f has Fourier coefficients
b(n) (with respect to ∞) given by

b(n) =
1
2


a1(n)+(1+ i)a2

( n
4

)
, n ≡ 0 mod 4,

a1(n)+
√

2a3
( n−1

4

)
(−1)

n−1
4 , n ≡ 1 mod 4,

−a1(n), n ≡ 2,3 mod 4.

(4.3)

Let V + ⊆M(Γ0(4),vθ,
1
2 ,λ) denote the subspace introduced by Kohnen in [32], i.e. V +consists of all f

with Fourier coefficients a1(n) = 0 for n≡ 2,3 mod 4. By using (4.3) it is easy to verify that V + is exactly
the eigenspace of L corresponding to the eigenvalue 1. Unfortunately the eigenspace V− corresponding
to the eigenvalue − 1

2 is not as simple to characterize. However, (4.3) can be used to identify V− by means
of certain relations between coefficients at the cusps at ∞, 0 and − 1

2 . E.g. if a1(1) = 1 then a3(0) =−
√

2
and if a1(1) = 0 then a3(0) = 0.

Clearly T vθ

4, 1
2

does not in general commute with L but in case L f = λ f , T4, 1
2

f = λ4 f and τN f = ε f

(with ε =±1) then a1 (4) = ε
√

2λ =− ε√
2
,
√

2ε. This should be compared with the results on newforms
at weight zero, e.g. [3, p. 147] and [64, p. 31 ].

4.4. Maass operators
So far, the operators we have seen act on spaces of Maass waveforms of a given weight and multiplier

system.
We will show that we may limit the range of weights k to investigate to k ∈ [0,6]. For this we will use

the Maass lowering and raising operators, E±
k ,which raise or lower the weight of a Maass waveform by

units of 2. They are defined by

E±
k = iy

∂

∂x
± y

∂

∂y
+

k
2
,

and using the relation between the Whittaker function and the confluent hypergeometric function together
with the transformation formulas [15, p. 258, (10)] (see also: [42, p. 183 (middle)] and [43, p. 302 lines
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-3 and -1]) we see that for k > 0 (here we set Y = 4π|n+α|y and nα = n+α)

E+
k

(
W k

2 ,iR(Y )e(nαx)
)

=−Wk+2
2 ,iR (Y )e(nαx), nα > 0,(4.4)

E−
k

(
W k

2 ,iR(Y )e(nαx)
)

=−
(

k(k−2)
4

+
1
4

+R2
)

Wk−2
2 ,iR (Y )e(nαx),nα > 0,(4.5)

E+
k

(
W− k

2 ,iR(Y )e(nαx)
)
=
(

k(k +2)
4

+
1
4

+R2
)

W− k+2
2 ,iR (Y )e(nαx), nα < 0,(4.6)

E−
k

(
W− k

2 ,iR(Y )e(nαx)
)
=W− k−2

2 ,iR (Y )e(nαx), nα < 0.(4.7)

To verify that they respect the weight k-action it is easiest to proceed straight forward but to use the
following form of the operators

E+
k = (z− z)

∂

∂z
+

k
2
,

E−
k = −(z− z)

∂

∂z
+

k
2
,

and write e−iArg(cz+d) =
( cz+d

cz+d

) 1
2 . Cf. [42, p. 178].

One can then show that E±
k maps M(Γ0(N),v,k,λ) into M(Γ0(N),v,k±2,λ), and that the composition

E∓
k±2E±

k : M(Γ0(N),v,k,λ) 7→M(Γ0(N),v,k,λ)

is just multiplication by a constant, which is readily seen to be nonzero anytime λ > 1
4 . Hence E±

k acts
bijectively on the spaces corresponding to non-exceptional eigenvalues, i.e. they are always bijections for
λ > 1

4 .

4.4.1. Maass operators and the symmetry about k = 6 4.4.1. First of all, observe that E±
k only change

the weight and not the multiplier system v, but in view of the remark after Def. 2.2 it is clear that v = v2k
η

is also a multiplier system of weight k + r for any r ∈ 2Z, and with the notation v(r)
η,k = v2(k+r)

η it is clear
that

E+
k : M(Γ0(N),v(r)

η,k,k,λ)→M(Γ0(N),v(r−2)
η,k+2,k +2,λ),

and
E−

k : M(Γ0(N),v(r)
η,k,k,λ)→M(Γ0(N),v(r+2)

η,k−2,k−2,λ).

Our main purpose is to investigate the eigenvalues of Maass waveforms on the modular group when the
weight and multiplier system are varied. That is, we would like to investigate the space M(Γ0(1),v(r)

η,k,k,λ)
for all k ∈ R and r ∈ {0,2,4,6,8,10}. Suppose that λ > 1

4 so the the lowering and raising operators act

bijectively, then using the (k,r) to denote that space M(Γ0(1),v(r)
η,k,k,λ) and using ≈ to denote bijectively

corresponding spaces we have:

• Since all v(r)
η,k are 24th-roots of unity we have trivially: (k,r +12) = (k,r).

• A composition of Maass operators which raises or lowers the weight by 12 will preserve the
multiplier system. Hence (k +12,r)≈ (k,r) and we may assume that k ∈ [0,12].

• K is a bijection from (k,r) to (−k,−r) = (−k,12− r)≈ (12− k,12− r) so there is no restriction
to assume k ∈ [0,6] and r ∈ {0,2,4,6,8,10}.

• By using the raising operator we see that (k,0) ≈ (k +2,−2) ≈ (k +2,10) and by repeated use
we see that with out loss of generality we can also assume r = 0.

We are thus justified in our choice of restricting the investigation to the spaces M(Γ0(1),v,k,λ) for k ∈
[0,6] and v = v(0)

η,k = v2k
η .
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4.5. Hecke operators for non-trivial multiplier systems
We know that Hecke operators play an important role in the understanding of the theory of both

modular forms and Maass waveforms at integer weights.
For general real weights, the Hecke operators are not important (and may well be non-existent), but

we will begin with a general definition anyway, and then we will consider two special cases: Γ0(4) with
the theta multiplier system and weight 1

2 and Γ0(1) with the eta multiplier system and weight 1.
The general introductory discussion is based on [67] but the specific example of integer weights (as

worked out in detail in [66]) is based on ideas from [76] and [70].
Let Γ ⊂ PSL(2,R) be cofinite and suppose v : Γ→ S1 is a multiplier system of weight k ∈ R. The

commensurator of Γ, comm(Γ) , in PSL(2,R) is defined as

comm(Γ) =
{

α ∈ PSL(2,R) |αΓα
−1∩Γ has finite index in Γ and αΓα

−1} .

We know that the Hecke operators are associated with the members of the commensurator, or actually
with the double cosets, ΓαΓ, for α ∈ comm(Γ). Fix α ∈ comm(Γ) . It can be shown that if the multiplier
system v satisfies

(4.8) v(g) = vα(g), ∀g ∈ Γ∩α
−1

Γα,

then we can define an associated multiplier system, vα, on the double coset:

vα : ΓαΓ → S1,

by setting

vα (g1αg2) = σk (g1α,g2)σk (g1,α)v(g1)v(g2) ,

for all g1,g2 ∈ Γ. It might be the case that there exists an associated multiplier system of W = χv, where
χ is a character on ΓαΓ, even though there does not exist an associated multiplier system of v itself.
Suppose that vα exists as above, and that we have ΓαΓ = ∪d

i=1Γαi. We then define the Hecke operator
T v

α,k : M
(
Γ,v,k,λ

)
→M

(
Γ,v,k,λ

)
by

(
T v

α,k f
)
(z) =

d

∑
i=1

vα (αi) f|[αi,k](z).

When Γ = Γ0(N) (or any congruence subgroup of level N), one usually constructs Hecke operators T v
n,k

corresponding to positive integers n in which case α =
(

1 0
0 n

)
(cf. e.g. [3], [18, ch. 5], [55, ch. 9], [44] or

[59] for more details).

4.5.1. Hecke Operators for the Theta multiplier System. Consider the case Γ = Γ0(4), k = 1
2 and v = vθ.

Let n be a positive integer and α =
(

1 0
0 n

)
. Then g ∈ Γ0(4)∩α−1Γ0 (4)α can be written g =

(
a nb

c/n d

)
,

and αgα−1 =
(

a b
c d

)
, with ad−bc = 1 and c ≡ 0 mod 4n. It is easy to verify that vα(g) = v(αgα−1) and

v(g) = v(αgα−1)
( n

d

)−1
, and hence vα(g) = v(g) if and only if

( n
d

)
= 1. By (4.8) this relation must hold

for all odd integers d, and hence it is clear that the extension vα exists if and only if n is a perfect square.
It is also easy to verify that in this case the multiplier system is given by vα (g1αg2) = v(g1)v(g2).

Suppose now for simplicity that n = p2, with p 6= 2 a prime number. The p2 + p different coset
representatives of Γ in ΓαΓ are given by αb =

(
1 b
0 p2

)
, b = 0, . . . , p2−1, σ =

(
p2 0
0 1

)
, and βb =

(
p b
0 p

)
, b =

1, . . . , p−1. By factorization of these representatives we see that vα (σ) = vα (αb) = 1, b = 0, . . . , p2−1
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and vα (βb) = εp

(
b
p

)
for b = 1, . . . , p−1. Hence, for p 6= 2

T vθ

p2, 1
2

f (z) =
1
p

{
p2−1

∑
b=0

vα (αb) f (αbz)+ vα (σ) f (σz)+
p−1

∑
b=1

vα (βb) f (βbz)

}

=
1
p

{
p2−1

∑
b=0

f
(

z+b
p2

)
+ f

(
p2z
)
+ εp

p−1

∑
b=0

(
b
p

)
f
(

z+
b
p

)}
.(4.9)

For p = 2 the 4 coset representatives are given by αb =
(

1 b
0 4

)
, b = 0, . . . ,3 and we obtain precisely the

operator in (4.2). The above construction is analogous to [60, pp. 450–451, thm. 1.7]. Suppose that
f ∈M

(
Γ0(4),vθ,

1
2 ,λ
)

has the following Fourier series at infinity

(4.10) f (z) = ∑
n6=0

a(n)√
|n|

W1
4 sgn(n),iR(4π|n|y)e(nx)

and that T vθ

p2, 1
2

f (z) has a similar Fourier expansion but with coefficients b(p)(n). Using the formula for

the standard Gauss sum, ∑
p2−1
b=0 e

(
nb
p2

)
= p2 if p2|n else 0, and the twisted version ∑

p−1
b=1

(
b
p

)
e
(

nb
p

)
=

√
p
(

n
p

)
εp (cf. [7, Satz 7, p. 375] or [39, pp. 83-87]) we get that for all non-zero integers n

b(p)(n) =
{

a(p2n)+a
(

n
p2

)
+ p−

1
2

(
n
p

)
a(n)

}
, p 6= 2, and

b(2)(n) = a(4n) .

(We use the standard convention that a(x) = 0 if x 6∈ Z.) It is now obvious that our Hecke operator T vθ

p2, 1
2

is equal to the corresponding Hecke operator defined in [29, p. 199]. Observe that our Fourier coefficients
a(n) =

√
n×Katok-Sarnak’s Fourier coefficients b(n).

As usual, we consider Hecke eigenforms in M
(
Γ0(4),vθ,

1
2 ,λ
)

which are simultaneous eigenfunctions
of all T vθ

p2, 1
2

with p 6= 2. An additional commuting normal operator can be chosen as either T vθ

4, 1
2

or L (these

two operators does not commute in general).
As it turns out, the operator L is particularly useful in connection with the Shimura correspondence on

the Kohnen space, V +, where L has eigenvalue 1 (cf. Section 6).
Observe that the Hecke eigenvalues in this case does not equal to the Fourier coefficients. In fact,

suppose that f as in (4.10) is an eigenfunction of all Hecke operators with T vθ

p2, 1
2

f = λp f and that a(t) 6= 0

for some integer t. It is then easy to see that

λp =

a
(
t p2
)

a(t)
+

(
t
p

)
√

p

 , p 6= 2, and(4.11)

λ2 =
a(4t)
a(t)

.

Using multiplicative relations of the Hecke operators one can prove (cf. [60, p. 453]) that if t is square
free, then

a(tm2)a(tn2) = a(t)a(tm2n2), for(m,n) = 1.

Furthermore, if f is also an eigenfunction of T vθ

4, 1
2

then

a(m)a(4n) = a(4m)a(n), m,n ∈ Z.
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4.5.2. Hecke operators at integer weights and Fourier coefficients. Consider the modular group, Γ =
PSL(2,Z), together with the integer weight k 6≡ 0 mod 12 and multiplier v = v2k

η .
It can be shown that for all positive integers n and m with kn ≡ −km ≡ k mod 12 we can construct

Hecke operators T v
n,k and Hecke-like operators Θv

m,k acting on M(Γ,v,k,λ). Using these operators one
can obtain multiplicative relations for Fourier coefficients similar to the weight zero case. This is shown
in detail in [66] and here we will only state the theorem and give a brief outline of the ideas of the proof.

Theorem 4.7. Let k be an integer k 6≡ 0 mod 12 and R > 0 then there exist a basis of M(Γ,v,k,R)
consisting of Maass wave forms f with Fourier expansions at infinity

f (z) =
∞

∑
n=−∞

c(n)√∣∣n+ k
12

∣∣W k
2 sgn(n+ k

12 ),iR

(
4π

∣∣∣∣n+
k

12

∣∣∣∣y)e
((

n+
k

12

)
x
)

where the coefficients c(n) satisfies the following multiplicative relations if c(0) 6= 0. For positive integers
m,n with 12m ≡ 12n ≡ 0 mod k set m1 = 12m

k , n1 = 12n
k and D = k

(12,k) . If (m1 +1,D) = (n1 +1,D) = 1

(4.12) c(m)c(n) = c(0) ∑
0<d|(m1+1,n1+1)

χk (d) c
(

k
12

(
(m1 +1)(n1 +1)

d2 −1
))

,

and if (m1−1,D) = (n1−1,D) = 1 then

(4.13) c(−m)c(−n) = Λk,R c(0) ∑
0<d|(m1−1,n1−1)

χk (d) c
(

k
12

(
(m1−1)(n1−1)

d2 −1
))

,

where χk (d) = ik(d−1) (=
(−1

d

)k
for odd d) and

(4.14) Λk,R =

{
∏

l
j=1
(

j ( j−1)+ 1
4 +R2

)2
, k = 2l,

−R2
∏

l
j=1
(

j2 +R2
)2

, k = 2l +1.

In particular, we see that if k|12 we have D = 1 and the multiplicative relations (4.12) and (4.13) are
valid for all positive integers.

Remark 4.8. As in the weight zero case and the coefficient c(1) one can show that if D = 1 and f is an
eigenfunction of all Hecke operators (defined below) then c(0) 6= 0 unless f (z) is identically 0. In the
case D > 0, if c(0) = 0 and f (z) 6≡ 0 we can choose an integer n0 such that c(n0) 6= 0 and obtain a similar
set of multiplicative relations.

The proof of the “positive part” of the theorem, i.e. equation (4.12) relies on the construction of a
family of Hecke operators T v

m,k with km ≡ k mod 12. It is shown that this family consist of self-adjoint
operators commuting with each other and the weight k Laplacian. An explicit form of T v

m,k is

(4.15) T v
m,k f (z) =

1√
m ∑

ad=m,d>0
χk (d)

d−1

∑
b=0

v(T )bd f
(

az+b
d

)
.

It is not hard to show that if f (z) has Fourier coefficients c(n) then T v
m,k has coefficients

b(n) = ∑
0<d|

(
m,n− k(m−1)

12

)χk (d)c

(
nm
d2 +

k
(
m−d2

)
12d2

)

from which we see that if T v
m,k f = λm f and c(0) 6= 0 then

λm =
1

c(0)

[
c
(

k (m−1)
12

)
+χk (D)c

(
k
(
m−D2

)
12D2

)]
.
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The proof of (4.12) is concluded with a proof of the following multiplication rule (using straight-forward
calculations and induction). If km ≡ kn ≡ k mod 12 then

T v
m,kT v

n,k = ∑
0<d|(m,n)

χk (d)T v
mn
d2 ,k.

To obtain the “negative part” of theorem, i.e. (4.13) we have to consider another family of operators,
Θv

m,k with km ≡−k mod 12. These operators are given as a combination of a bijection Θ = J ◦E−
k map-

ping M(Γ,v,k,λ) to M(Γ,v,k,λ) and an Hecke operator T v
m,k mapping M(Γ,v,k,λ) back to M(Γ,v,k,λ).

Here E−
k = E−

2−k ◦ · · · ◦E−
k−2 ◦E−

k maps M(Γ,v,k,λ) to M(Γ,v,−k,λ) bijectively since λ > 1
4 and J re-

flects this space back to M(Γ,v,k,λ). T v
m,k is given by (4.15) with v interchanged with v. The operator

Θ is similar to the operator defined by Maass in [42, p. 181]. Using (4.4)-(4.7) it is easy to show that
Θ2 f = Λk,R f for all f ∈ M(Γ,k,v,λ) and that if f (z) has Fourier coefficients c(n) then Θv

m,k f (z) has
coefficients

d (n) = ∑
0<d|

(
m,n− k(m+1)

12

)χk (d)c′
(

nm
d2 +

k
(
m+d2

)
12d2

)

where c′ (n) = c(−n)

{
1, n ≥ 1,

Λk,R, n ≤ 0.
If Θv

m,k f = µm f and c(0) 6= 0 then

µm =
1

c(0)

[
c
(

k (m+1)
12

)
+χk (D)c

(
k
(
m+D2

)
12D2

)]
.

The multiplication rule for the operators Θv
m,k is that for km ≡ kn ≡ k mod 12 we have

Θ
v
m,kΘ

v
n,k = Λk,R ∑

0<d|(m,n)
χk (d)Θ

v
mn
d2 ,k.

This in combination with the expressions for µm and λm concludes the proof of (4.13).

Example 4.9. Look at the specific case k = 1 and a function f ∈ M(Γ,v,1,λ) then by by setting m = 1
in (4.12) and using the normalization c(1) = 1 we see that

c(n) = ∑
0<d|(12n+1,13)

χ1 (d)c

((
13(12n+1)−d2

)
12d2

)
and hence if (12n+1,13) = 1 then we get a striking proportionality relation:

c(n) =c(0)c
(

13(12n+1)−1
12

)
= c(0)c(13n+1) .(4.16)

For 12n+1 = 13l we get

c(n) =c(0)
(

c(13n+1)+ c
(

n−1
13

))
,(4.17)

and if (l,13) = 1 we can combine these two equations and obtain:

c(n) =c(0)(c(13n+1)+ c(0)c(n))(4.18)

and hence

(4.19) c(n) =
c(0)

1− c(0)2 c(13n+1) .
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Consider now m =−1 in (4.13) and note that Λ1,R =−R2. If (12n−1,11) = 1 then

(4.20) c(−n) =
−R2c(0)

c(−1)
c(11n−1),

and if (12n−1,11) = 11 then

(4.21) c(−n) =
−R2c(0)

c(−1)

[
c(11n−1)− c

(
n−1

11

)]
.

We have not seen relations of type (4.16)-(4.21) earlier in the literature. For some numerical examples
see Tables 2 and 3. Examples of relations for higher weights can be found in [66].

Remark 4.10. An alternative approach to the above coefficient relations in the case of weight 1 is to
identify M(Γ0(1),v2

η,1,λ) with a subspace of M(Γ0(144),
(−1

d

)
,1,λ) via the map f (z) 7→ g(z) = f (12z).

Cf. e.g. [64, sec. 2.4.7].
This identification also provides an explanation for the occurrence of CM-type forms found (numeri-

cally) in M(Γ0(1),v2
η,1,λ). These forms have eigenvalues in an arithmetic progression: Rk = 2πk

ln(7+2
√

12) ,

for k ∈ Z. See Table 4.

5. THE EISENSTEIN SERIES FOR PSL(2,Z) AT WEIGHT ZERO

In case there is a cusp p j at which the multiplier system is singular (i.e. v(S j)= 1) we have a continuous
spectrum: [ 1

4 ,∞) (with multiplicity equal to the number of singular cusps), and in general we can not say
much about the embedded discrete spectrum in [ 1

4 ,∞).
Examples of singular cusps are the cusp at infinity for the eta multiplier and weight k ≡ 0 mod 12 on

PSL(2,Z) and the cusps at 0 and i∞ for the theta multiplier and weight 1
2 on Γ0 (4).

Remember that Maass waveforms are part of the discrete spectrum, but as we continuously “turn off”
the multiplier system, i.e. for v = v2k

η we let k → 0, the continuous spectrum will emerge in the limit. For
this reason we want to review some details concerning the Eisenstein series on the modular group.

At weight 0 and singular character χ, the continuous spectrum of ∆ = ∆0 is the interval [ 1
4 ,∞) and the

eigenpacket is given by the Eisenstein series E(z;s;χ) defined by

E(z;s;χ) = ∑
T∈Γ∞\Γ

χ(T−1)(ℑ(T z))s ,

where Γ∞ = [S]. For the trivial character we have the Fourier series expansion (cf. [22, p. 65 and p. 76])

E(z;s;χ) = ys +ϕ(s)y1−s
∑
n 6=0

ϕn(s)
√

yKs− 1
2
(2π|n|y)e(nx),

where

ϕ(s) =
√

π
Γ
(
s− 1

2

)
Γ(s)

ζ(2s−1)
ζ(2s)

, and

ϕn(s) =
2πs|n|s− 1

2

Γ(s)
σ1−2s(|n|)

ζ(2s)
.

Hence we can see that for s = 1
2 + iR , the nth Fourier coefficient of E(z;s) is given by

c(n) = ϕn

(
1
2

+ iR
)

= K · |n|iRσ−2iR(|n|)(5.1)

= K · |n|iR ∑
d||n|,d>0

d−2iR,
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where K = K(R) is a constant dependent on R. For a prime p we get

c(p) = K · piR(1+ p−2iR) = 2K · cos(R ln p).

Using this formula we can compute quotients of various c(p) (e.g. c(2)
c(3) ) and compare this with corre-

sponding quotients for the experimentally obtained forms of weight k ≈ 0.

6. THE SHIMURA CORRESPONDENCE

We know that the θ−function is an automorphic form (not a cusp form) of weight 1
2 on Γ0(4), hence

we consider Γ0(4) together with the θ−multiplier system (cf. section 2.3).
6.1. Introduction – the holomorphic case

We will consider the Shimura correspondence only in the particular case of trivial character and level
a square-free multiple of 4. Let Sk(N) denote the space of holomorphic cusp forms of weight k ∈ Z (and
trivial multiplier) on Γ0(N), and let Sk+ 1

2
(4N) denote the space of holomorphic cusp forms of weight

k+ 1
2 , k ∈ Z and multiplier vθ, on Γ0(4N). The Shimura correspondence is a correspondence between the

space Sk+ 1
2
(4N) and spaces S2k(N′) for certain integers N′|4N (e.g. N′ = 2N or N).

The map from Sk+ 1
2

to S2k was first constructed by Shimura [60] and later an adjoint map from S2k to
Sk+ 1

2
was constructed by Shintani [62]. The former uses a Dirichlet-series and the latter uses an integral

against a theta-function. Both these maps commute with the Hecke operators that are acting on S2k(N)
and Sk+ 1

2
(4N) respectively. Kohnen [32, 33] proved that for N odd and square-free, the correspondence is

a bijection between the newforms on S2k(N) and a certain subspace, V + ⊆ Sk+ 1
2
(4N). The subspace V + is

composed of Hecke eigenfunctions whose Fourier coefficients, c(n), satisfy certain vanishing properties;
namely, c(n) = 0 for n ≡ 2,3 mod 4 (see also Section 4.3).

Following from the Shimura correspondence is also a connection between certain Fourier coefficients
of the half integral weight forms and critical values of twisted L-series for the corresponding integral
weight form. Cf. e.g. [73, 74], [35, 34] and [61].
6.2. The Shimura correspondence for Maass waveforms

The extension of the Shimura correspondence and Kohnen’s result to spaces of Maass waveforms has
been investigated by e.g. Sarnak [57], Hejhal [20], Duke [14], Katok-Sarnak [29], Khuri-Makdisi [30],
Kojima [36, 37, 38], Biró [5] and Arakawa [2]. Of these, [30] and [37, 38] are written in the more general
setting of Hilbert modular forms for number fields. Reading [30] together with [61] and [29] gives a good
picture of the current state of affairs.

Throughout this section let M(N,R)+ denote the space of even (with respect to J : z 7→ −z) Hecke nor-
malized Maass waveforms in M(Γ0(N),1,0,R) and let M 1

2
(4,R) denote the space of Hecke normalized

(with respect to all Tp2 , p 6= 2) weight 1
2 Maass waveforms in M

(
Γ0(4),vθ,

1
2 ,R
)
. Also let V + ⊆M 1

2
(4,R)

be defined as in Section 4.3.
For f ∈M(N,R)+ and φ ∈M 1

2
(4,R) we will use the following notation:

f (z) =
∞

∑
n=−∞

n6=0

A(n)
√

yKiR (2π|n|y)e(nx),

and

φ(z) =
∞

∑
n=−∞

n6=0

a(n)√
|n|

W1
4 sgn(n),iR (4π|n|y)e(nx) .

(Both expansions are given with respect to the cusp at ∞).
The existence of a Shimura correspondence and an inverse for Maass waveforms is expressed by the

following proposition (essentially [30, thm. 5.1 and 5.2]):
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Proposition 6.1.
a) The Shimura correspondence gives a map Φ : M 1

2
(4,R)→M(2,2R)+.

b) Conversely, let f ∈M(2,2R)+. Then there exists a φ ∈ Φ−1( f ) ∈M 1
2
(4,R).

c) If A(p) is the Hecke eigenvalue of f with respect to the operator Tp and λp is the eigenvalue
of φ ∈ Φ−1( f ) with respect to T vθ

p2, 1
2

then we actually have

A(p) = λp.

Proof. See the proof of [30, thm. 5.1 and 5.2]. For c) observe the difference in normalization of the
Hecke operators. Cf. also [36, thm. 2], Proposition 6.3 a) and (4.11). �

Remark 6.2. From [29, prop. 4.1 and 2.3] we know that the above correspondence Φ actually restricts to
a map between M(1,2R)+ and the subspace V +. And hence a new form in M(2,2R)+ will be mapped
to V−, the orthogonal complement of V +. Vice versa, a form in V− will be mapped to a new form in
M(2,2R)+.

To generalize the results mentioned at the end of the previous subsection to Maass waveforms we
need the following definition. For f ∈ M(2,R)+ with Fourier coefficients {A(n)} and a given Dirichlet
character χ we define the χ-twisted L-series of f by

L( f ,χ,s) =
∞

∑
n 6=0

A(n)χ(n)|n|−s− 1
2 .

Proposition 6.3. Let φ ∈ M 1
2
(4,R) have Fourier coefficients {a(n)} and correspond (via Prop. 6.1) to

f = Φ(φ) ∈ M(N,2R)+ (where N = 1 if and only if φ ∈ V +, otherwise N = 2) with Fourier coefficients
{A(n)}. Let t ∈ Z+ be square free and let χ′t be the quadratic residue symbol

( t
·
)

considered mod Nt (i.e.
we have χ′t(n) =

( t
n

)
if (n,N) = 1 and χ′t(n) = 0 otherwise.

Then the following properties hold:

a) If a(t) 6= 0 then A(n) can be expressed by:

A(n) = ∑
kd=n

k>0

χ′t (k)√
k

a
(
td2
)

a(t)
, n ∈ Z+.(6.1)

To express a(t) in terms of A(n)’s we get three cases.

b) If f is an oldform. i.e. f ∈M(1,2R)+ then φ ∈V + and hence

a(t) = 0, t ≡ 2,3 mod 4.

c) If f is a newform with eigenvalue ε with respect to the involution z 7→ −1
2z then

a(t) = 0

for t ≡ 5 mod 8 if ε = 1 and for t ≡ 1 mod 8 if ε =−1.
d) For all other (square free) values of t the following formula holds

|a(t)|2 = Q
〈φ,φ〉
〈 f , f 〉

L( f ,χt ,0)

where Q is a constant independent of t.
e) If φ is a normalized Hecke eigenform (for all T vθ

p2, 1
2
, p an odd prime) then f is also a normal-

ized Hecke eigenform.
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Proof. Cf. [60, pp. 448(prop. 1.3), 458 (main theorem), 474 (line -11)], and [30, p. 422] for the choice
of χ′t (the N = 1 case is simply to incorporate the results of [29]). Relation a) follows from [30, thm. 5.1
(2)], which in our case can be written as

(6.2)
∞

∑
n=1

A(n)n−s = c ·L
(

s+
1
2
,χ′t

)
∞

∑
n=1

a
(
tn2)n−s.

(Cf. e.g. also [60, p. 458], [47, p. 159], [61, prop. 3.1].) The relation b) follows from [29, prop. 2.3] (see
also [32]) and relation c) is implicit in [30, thm. 8.1 (8.6)]. Simply observe that in our normalization the
relevant factor in the product is given by(√

2A(2)−
(

2
t

))
=−

(
ε+
(

2
t

))
since A(2) = −ε√

2
for a newform (analogous to [3, thm. 3]). (Alternatively consider the sign of the func-

tional equation for L( f ,χt ,s).) Relation d) is the Maass waveform-analogue of [35, thm. 1] and follows
from [30, thm. 8.1] (in the notation of [30] we have a(n) = |n| 1

4 µ(n;φ)). �

Remark 6.4. That the map Φ is well-defined and surjective from M 1
2
(4,R) onto M(2,2R)+ follows from

[30, thm. 5.1 and 5.2] and “multiplicity one” for the Hecke operators Tp on M(2,2R)+ (cf. [68, thm. 4.6]).
Experimentally we have observed that Φ restricted to V + also seems to be injective. Theoretically, this
is still an open problem that might be possible to resolve using the trace formula for the Hecke operators
Tp2 on V +.

Remark 6.5. Note that the same argument as for 6.3 c) implies that to any f ∈ M(2,2R)+ with Fourier
coefficient A(2) = ±1√

2
there corresponds a function φ ∈ Φ−1 ( f ) ⊆ M 1

2
(4,R) with coefficients a(n) = 0

for either n ≡ 1 or 5 mod 8 respectively. Hence, since oldforms on Γ0(2) occur in pairs, we can choose
two forms f1, f2 with A1(2) = 1√

2
respectively A2(2) = −1√

2
. These two functions thus correspond to two

linearly independent non-zero functions in M 1
2
(4,R) which hence is at least two dimensional when 2R is

an even eigenvalue for PSL(2,Z).

The relations a)–c) in Proposition 6.3 appeared in [64, ch. 2] as experimental observations (cf. 8.4, in
particular Tables 5-8).

See also [12, §4.1] and [13, p. 633], and [61, pp. 502 (bottom) – 504 (top)] for some additional
perspectives.

7. SOME COMPUTATIONAL REMARKS

We recall the key ingredients in the standard Hejhal’s algorithm (cf. e.g. [25, 26, 27], [65, 64] and
[6]) to compute weight zero Maass waveforms on cofinite Fuchsian groups. First of all the asymptotic
properties of the K-Bessel function are used to obtain an approximation the Maass waveform by a trun-
cated Fourier series. By viewing this as a discrete Fourier transform one can use the inverse transform to
express any coefficient as a linear combination of the other coefficients. Finally, by using the assumed au-
tomorphy properties of the function one obtains a non-trivial linear system that is satisfied by the Fourier
coefficients.

To use this algorithm to also locate eigenvalues the most general method is to use two different sets of
sampling points for the inverse transform and try to minimize the difference between the correspondingly
computed solution vectors.

The following two modifications are needed in order to make the weight zero algorithm work in the
general case:

• the K-Bessel function needs to be replaced with the Whittaker function, and
• the automorphy condition needs to incorporate the multiplier system.
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The first modification, although trivial in theory is the most complex in terms of the numerics involved.
There was no efficient algorithm for the Whittaker function in the literature and a new algorithm had to
be developed. We used the integral representation (cf. [22, p. 375 (top)])

Wk,iR(2x) =

√
2x
π

Z
∞

0
e−xcosh t

Ψ

[
−k;

1
2

;x(1+ cosh t)
]

cosh [iRt]dt,

where Ψ is a confluent hypergeometric function together with a stationary phase method to develop a
robust and efficient algorithm. This algorithm is in essence similar to Hejhal’s algorithm (cf. [25]) for
the K-Bessel function, KiR(x), and the generalization of it made by Avelin (cf. [4, Avelin]) to a complex
argument, Ks(x), s ∈ C. The details of this algorithm is described in [64, Ch. 4].

Let Γ be a Fuchsian group with fundamental domain F and let p j, σ j, 1≤ j ≤ κ, qi and Ui, 1≤ i≤ κ0
be as in Section 1.2. Let I (w) = i if qi is the closest (in the hyperbolic metric) parabolic vertex to w ∈ F .

Consider z ∈ H and let Tj ∈ Γ be the pull-back map of σ jz, i.e. Tjσ jz ∈ F . Observe that f j(z) =
f|σ j(z) = jσ j(z;k)−1 f (σ jz), and with z∗j = σ

−1
I( j)UI( j)Tjσ jz where we set I ( j) = I (Tjσ jz) (cf. [65, p. 23])

the automorphy condition now becomes:

f j(z) = jσ j(z;k)−1 f (σ jz) = jσ j(z;k)−1 f (T−1
j U−1

I( j)σI( j)z
∗
j)

= jσ j(z;k)−1v(T−1
j U−1

I( j),k) jT−1
j U−1

I( j)
(σI( j)z

∗
j ;k) f (σI( j)z

∗
j)(7.1)

= jσ j(z;k)−1 jT−1
j U−1

I( j)
(σI( j)z

∗
j ;k) jσI( j)(z

∗
j ;k)v(T−1

j U−1
I( j),k) fI( j)(z

∗
j).

The entire setup of the Phase 1 algorithm, i.e. locating eigenvalues and computing the first few Fourier
coefficients, goes through exactly as in the case of weight 0 (cf. [65] or [64, Ch. 1]) with some trivial
modifications. For the sake of completeness we will give an outline of the modified algorithm. Consider
f ∈M(Γ,v,k,λ) and using the notation ni = n+αi f has a Fourier series expansion at the cusp pi:

fi(z) = f|[k,σ j] (z) =
∞

∑
−∞

n+αi 6=0

ci(n)√
|ni|

W k
2 sgn(ni),iR

(4π|ni|y)e(nix) ,

and since the Whittaker function is ultimately exponentially decaying, given an ε > 0, there exists a
constant (depending on y and ε), M(y), such that

fi(z) = f̂i(z)+ [[ε]],

where we use [[ε]] to denote a constant of magnitude less than ε. The truncated Fourier series

f̂i(z) =
M(Y )

∑
−M(Y )
n+αi 6=0

ci(n)√
|ni|

W k
2 sgn(ni),iR

(4π|ni|y)e(nix) ,

is now viewed as a discrete Fourier transform, and if we take the inverse transform over the horocyclic
points: zm = xm + iY , 1−Q ≤ m ≤ Q, where xm = 1

2Q ( 1
2 −m) we get:

1
2Q

Q

∑
1−Q

f̂i(zm)e(−nixm) =
1

2Q

Q

∑
m=1−Q

M(Y )

∑
l=−M(Y )

li 6=0

ci(l)√
|li|

W k
2 sgn(li),iR

(4π|li|Y )e(lixm−nixm)

=
M(Y )

∑
l=−M(Y )

li 6=0

ci(l)√
|li|

W k
2 sgn(li),iR

(4π|li|Y )
1

2Q

Q

∑
1−Q

e(lixm−nixm)

=
ci(n)√
|ni|

W k
2 sgn(ni),iR

(4π|ni|Y ) ,
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where we used the fact that

1
2Q

Q

∑
1−Q

e(lixm−nixn) = e
(

li−ni

4Q

)
1

2Q

Q

∑
1−Q

e
(
−(li−ni)

m
2Q

)
= δnl .

Now we also have fi(zm) = χmi fI(m,i)(z∗mi), where (by (7.1))

χmi = jσi(zm;k)−1 jT−1
i U−1

I(m,i)σI(m,i)
(z∗mi;k)w(T−1

i U−1
I(m,i),σI(m,i))v(T

−1
i U−1

I(m,i),k).

Hence

ci(n)√
|ni|

Wsgn(ni) k
2 ,iR(4π|ni|y) =

1
2Q

Q

∑
1−Q

fi(zm)e(−nixm)+ [[ε]]

=
1

2Q

Q

∑
1−Q

χmi fI(m,i)(z
∗
mi)e(−nixm)+ [[ε]]

=
κ

∑
j=1

M0

∑
l=−M0
n+αi 6=0

c j(l)V
i j
nl +2[[ε]],

where

V i j
nl =

1√
|l j|

1
2Q

Q

∑
1−Q

I(m,i)= j

χmiWsgn(l j) k
2 ,iR(4π|l j|y∗m j)× e

(
l jx∗m j

)
e(−nixm).

We then define Ṽ i j
nl by

Ṽ i j
nl = V i j

nl −δnlδ ji
1√
|ni|

Wsgn(ni) k
2 ,iR(4π|ni|Y ),

and if we neglect the error of magnitude ε we finally obtain a (well-conditioned) linear system

(*) CV = 0,

which must be satisfied by the Fourier coefficients of f . Here V is the matrix Ṽ i j
nl and C is the vector

ci(n), both depending on R and Y . The basic idea of Phase 1 is now to locate eigenvalues R together with
sets of corresponding Fourier coefficients, ci(n), by solving (*) repeatedly for different R’s, and seeking
those values of R for which the solution vectors C = C(R,Y ) are stable under changes of Y . That is, if
C(R,Y1)≈C(R,Y2) (for Y1and Y2 <Y0, for some suitable constant Y0) we take it as an indication that the R
is close to an eigenvalue and that the components of C are close to the corresponding Fourier coefficients.
For more details and justifications see [65, sect. 3.2].

We note that the Phase 2 algorithm (i.e. computation of a larger set of Fourier coefficients) also
generalizes to non-zero weight in a similar manner (cf. [65, sect. 3.3]).

8. NUMERICAL RESULTS

The experimental excursions have been directed towards three essentially different subjects, but, in
each, we have worked in an exploratory spirit.

• First we tried to get an over-all picture of the distribution of small to middle-range sized eigen-
values on PSL(2,Z) (and the eta multiplier) for “large” weights, e.g. R ∈ [0,14] and k ∈ [0.1,6].

• Second, we continuously “turned off” the multiplier system v2k
η on PSL(2,Z) by letting the

weight k→ 0 and studied the varying distribution of eigenvalues, Nk(T ), as well as the formation
of the continuous spectrum.



COMPUTATION OF MAASS WAVEFORMS WITH NON-TRIVIAL MULTIPLIER SYSTEMS 21

Figure 1: Section of eigenvalues with 0 < R ≤ 14, and weight 0.1 ≤ k ≤ 6.
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• There are some cases where arithmeticity plays a role even in nonzero weight. We studied the
Shimura correspondence between weight zero forms on Γ0(2) and weight one half forms on
Γ0(4). And we also studied weight one forms on PSL(2,Z) which correspond to Hecke eigen-
forms on Γ0(144) with a Dirichlet character.

8.1. Varying weight
The first experiment considered was to tabulate the first few eigenvalues (up to R = 14) for PSL(2,Z)

and the multiplier system v2k
η , of weight k ∈ (0,6] (cf. Section 4.4.1). We made the computations for

k ∈ [0.1, 6] with a grid size of 0.01, and the results are presented in Figure 1. We stress here, that the arcs
in Figure 1 terminate at k = 0.1; it is not excluded (and actually expected) that they might go lower.

For some examples of eigenvalues for “large” weights see Table 1. This data should be compared with
data obtained by Mühlenbruch, [46, p. 160], who used a completely different method (with much less
accuracy). We note here that as R increases, the negative Fourier coefficients seem to grow rapidly in
magnitude (as compared to the positive ones, with the normalization c(1) = 1) for “large” weights.

We believe that we have found all eigenvalues with (R,k) ∈ [0,14]× [0.1, 6]. This belief is founded on
the “continuity” of the resulting graphs R j(k) (cf. Figure 1), where R j(k) is the j-th eigenvalue at weight
k, considered as a function of k. By standard results (e.g. [10, p. 149]) R j(k) should be a real analytic
function in this interval.

Remember that, for k ≥ 0, the smallest eigenvalue, λmin, corresponds to the function F(z) = y
k
2 η(z)2k.

A lower bound for the second smallest eigenvalue, λ0(k), is discussed in [10, p. 183]. Bruggeman finds
two such bounds, both positive, which he calls µ0(k) and µ1(k) (µ1 is better than µ0 in a certain interval
I ⊂ [0,2].) Figure 2 shows a comparison between the R-values corresponding to these bounds and the
smallest experimentally found eigenvalues in the interval k ∈ [0.1, 6]; we see that Bruggeman’s bounds
can be improved quite a bit.
8.2. Small weights

The investigation of eigenvalues for small weights k has been done in the interval R ∈ [0,20], and
k ∈

{
10− j |1 ≤ j ≤ 12

}
⊂
[
10−12,0.1

]
. We believe that most cusp forms were found. Let us use the

notation
λ j(k)

for the j-th discrete eigenvalue at weight k, and φ j(k) for the corresponding cusp form. It is then a
basic fact that λ j(k) depends continuously on k, but it can also be shown that for k ∈ (0,12) λ j is even
real analytic in k. That is, φ j(k) belong to an “analytic family” in the terminology of Bruggeman (see
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Figure 2: Comparison with the theoretical lower bounds in k ∈ [0.1,6].
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[10, 11]). In connection with this, it should also be noted that our experiments support the statement in
Observation 71 in [46] that the first few cusp forms at weight 0 do not belong to an analytic family of cusp
forms defined in the interval (−12,12). Indeed we find that in the range considered we actually seem to
have λ j(k)→ 0 as k → 0 which is consistent with Bruggeman’s result (cf. case ii) b) in Prop. 2.17 in [10,
p. 149]).

Our experiments indicate that for fixed small k, the “generic” cusp forms φ j(k) can be divided into two
classes:

• C(k), and
• E(k).

Here C(k) consists of functions φ j(k) such that λ j(k) is close to an eigenvalue of a cusp form at weight 0
and the Fourier coefficients are close to the corresponding coefficients of the weight-zero cusp form.

E(k) on the other hand consists of functions φ j(k) such that the Fourier coefficients are close to the
Fourier coefficients of the Eisenstein series E(z,s) where λ j(k) = s(1− s).

The typical difference between the Fourier coefficients at weight k and weight 0 are in both cases
basically of order k; for the forms in C(k), the distance between λ j(0) and the corresponding discrete
eigenvalue at weight 0 is much smaller than k.

The “generic” in the statement above means that we exclude certain places where the families φ j(k)
changes character between C(k) and E(k). In these cases we have a situation of almost multiplicity 2, and
in too coarse resolution it actually looks like the analytic families intersect.

Weyl’s law For non-trivial η-multiplier and a fixed non-zero weight k ∈ (0,12) on PSL(2,Z) is

(8.1) Nk(T ) = ]{R ≤ T, weight k}=
T 2

12
− T

π
ln
∣∣∣1− e

kπ

6 i
∣∣∣+S(T )+O(1),

for T ≥ 1 (cf. [22, p. 466] with κ0 = 0). Our experiments seem to suggest that as k → 0, the main
contribution is proportional to the factor ln

∣∣∣1− e
kπ

6 i
∣∣∣, and indeed it is easy show that the O(1) term is

even uniformly bounded in k.
To obtain asymptotics for S(T ) when k → 0 (and T is bounded) is a bit more involved. We want to

generalize [22, thm. 2.29, p. 468] by following the pointers provided in [22, proof of thm. 2.29, p. 468].
Basically, our goal is to single out any terms that grow as k → 0 in the estimates for S(T ).

By careful bookkeeping we see that these terms are all of the form ln
∣∣∣1− e

kπ

6 i
∣∣∣ and this kind of terms

only show up when we apply the functional equation for the logarithmic derivative of the Selberg zeta
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function, Z (s) ([22, thm. 2.18, p. 441]). To obtain the necessary estimate of Z′
Z (s) we study the integral

in the left hand side of [21, prop. 8.6, p. 121]. Let the assumptions of [21, ass. 8.5 p. 120] and [21, p.
125 row 5] apply, e.g. s = σ + iT , U = T + 10 and 1

2 ≤
1
2 + ε = σ1 < σ. Through the integral estimates

[21, prop. 8.7-8, 8.10-11] we consider either Z′
Z (ξ)− 2ln

∣∣∣1− e
kπ

6 i
∣∣∣ or Z′

Z (ξ), depending on whether the
functional equation is applied along this part of the path or not and then collect the extra terms at the
end. It turns out that we consider the modified integrand in all parts to the left of ℜ(ξ) = 1

2 − ε. With
this modification, all estimates in [21, prop. 8.7-8, 8.10-14, thm. 8.15 and 8.17] go through except for the
addition of a term Rm(s) = 2

lnx ln
∣∣∣1− e

kπ

6 i
∣∣∣ Im(s) where Im(s) is the integral

Im(s) =
1

2πi

Z
γ

xξ−s− x2(ξ−s)

(ξ− s)2 dξ,

where the path is γ = γU =
[ 1

2 − ε− iU,−A− iU
]
∪ [−A− iU,−A+ iU ]∪

[
−A+ iU, 1

2 − ε+ iU
]
. The in-

tegrand has no poles to the right of ℜ(ξ) = 1
2 − ε and is hence equal to the integral from 1

2 − ε− iU to
1
2 − ε+ iU . Elementary estimates now show that

|Im (s)| ≤ 2x(
1
2−ε−σ)

2π

Z U

−U

1

ε2 +(t−T )2 dt ≤ x−2ε

πε2

Z U

−U

1

1+
( t−T

ε

)2 dt ≤ x−2ε

ε
.

Using x = T
1
4 (cf. [21, p. 138, row -6]) together with ε = 1

lnx (cf. [21, ass. 8.16(b), p. 130]) we see that

|Rm (s)| ≤ x−
2

lnx ln
∣∣∣1− e

kπ

6 i
∣∣∣ lnx

1
lnx

= e−2 ln
∣∣∣1− e

kπ

6 i
∣∣∣ .

This error term is now to be added to Z′
Z in [21, thm. 8.15] and subtracted from the right hand side

of [21, thm. 8.17] and finally in [21, p. 135 (8.18)] we need to add −
R 2

1
2

ℑ [Rm (s)] to the expres-
sion of πS (T ). Thus the analogue of [21, thm. 8.1, p. 119] and [22, thm. 2.29, p. 468] is S (T ) =
O
( T

lnT

)
+ O(1) ln

∣∣∣1− e
kπ

6 i
∣∣∣ (with implied constants independent of k) and inserted into (8.1) we con-

clude the following Weyl’s law:

Nk(T ) =
T 2

12
− ln

∣∣∣1− e
kπi
6

∣∣∣[T
π

+O(1)
]
+O

(
T

lnT

)
,(8.2)

uniformly for 0 < k ≤ 0.1 (say) and T ≥ 2 and the O(1) term is bounded in magnitude by 3
2π

e
−2 ≈ 0.065.

We have computed Nk(T ) experimentally for k = 10− j, j = 4, . . . ,12, and 0≤ T ≤ 20. Figure 3 shows a
picture of the experimental values compared to the theoretical values obtained by (8.2) (with the O-terms
neglected) and the difference indeed seems to be constant over this range.

From the form of the Weyl’s law above, we also see that the successive spacings ∆n(k) = Rn+1(k)−
Rn(k) should look about like 1

dNk
dT

, i.e. ∆n(k) ≈ 1
T
6 + 1

π |ln kπ

6 |
∼ π

|ln kπ

6 |
as k → 0. Figure 4 provides a nice

illustration of this fact, where it is clearly seen that the average spacings are almost constant for small k
and this constant is roughly proportional to 1

| lnk| .
The mean gap over 100 typical cases (Rn, 5 ≤ n ≤ 155) turned out to be 0.117 at k = 10−9, 0.107

at k = 10−10, 0.101 at k = 10−11 and 0.095 at k = 10−12. The relative quotients, ∆n(k)
[Rn

6 + 1
π

∣∣ln kπ

6

∣∣],
are 1.019, 0.990, 1.001 and 0.9934, respectively and it is not inconceivable that one obtains 1 in the
(logarithmic) limit.

8.2.1. Level repulsion. From figures like 4 one may be tempted to think that there are horizontal lines
corresponding to cusp forms at weight 0 which crosses the lines that are going down (i.e. corresponding to
the Eisenstein series at weight 0). This is not the case! If we look closer we will see that there is actually
“level repulsion” here, i.e. the horizontal “cusp-form-line” turns down before the “near crossing” and
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Figure 3: Plot of Weyl’s law with constant T = 20 and weight k → 0
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Figure 4: Section of eigenvalues with 9 ≤ R ≤ 14, and 1E−9 ≤ k ≤ 1E−7.
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becomes an “Eisenstein-series-line” and the previous “Eisenstein-series-line” turns into a “cusp-form-
line”. See also Figures 5 and 6. More precisely formulated: if there is a “near crossing” at the weight k0
close to the eigenvalue R0 ≈ R j(k0) ≈ R j+1(k0), then there are two analytic families φ j(k) and φ j+1(k)
such that for some δ > ε > 0:

φ j(k) ∈

{
C(k), k ∈ [k0 + ε,k0 +δ],
E(k), k ∈ [k0−δ,k0− ε],

and

φ j+1(k) ∈

{
E(k), k ∈ [k0 + ε,k0 +δ],
C(k), k ∈ [k0−δ,k0− ε],

and in the interval (k0 − ε,k0 + ε) both families display a mixing between the two types E(k) and C(k).
In fact, the Fourier coefficients of φ j+1 converge (as k → k0−ε) to values close to the Fourier coefficients
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Figure 5: Level repulsion at R = 13.779 . . .
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of φ j for k > k0 + ε and vice versa. Since the two functions also need to be orthogonal it is clear that the
Fourier coefficients exhibit “wild” behavior in the small interval surrounding the “near crossing”. Note
also that, as k → 0, all φ j(k) ∈ E(k) and R j(k)→ 0.

See Table 9 for examples of Fourier coefficients corresponding to eigenfunctions of types E(k) and
C(k), close to an avoided crossing at weight k = 9.044605824E − 8. Table 10 illustrates the agreement
between the Fourier coefficients of a more generic cusp form in E(k) and the corresponding coefficients
of the Eisenstein series (appropriately normalized) at weight 0. The level of agreement is striking to put
it mildly; likewise in Table 9 for the C(k) eigenfunction. The “1 for 1” nature of this convergence in the
presence of a limiting continuous spectrum seems not to have been suspected earlier. Cf. [24, thm. 6.6
and cor. 6.9] and [23].

The fact that the system seems to avoid accidental degeneracies by means of level repulsion and
avoided crossings is in agreement with the Wigner-von Neumann theorem, cf. [72].
8.3. Lifts at weight 1

As we saw in Section 4.5.2 we could prove the existence of certain Hecke relations at weight 1 (e.g.
(4.19), (4.20) and 4.21)). Tables 2 and 3 contain numerical verifications of these relations. Table 4 con-
tains a list of computed eigenvalues on M

(
Γ0(1),v2

η,1,λ
)
, and the eigenvalues corresponding to cosine

CM-forms are indicated. In these cases, we have computed the actual error since we know the exact
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Figure 6: Level repulsion at R = 9.533 . . .

9.0

9.2

9.4

9.6

9.8

10.0

1.20e-08 1.60e-08 2.00e-08 2.40e-08 2.80e-08

R

Weight k

9.53362

9.53366

9.53370

9.53374

9.53378

2.4350e-08 2.4353e-08 2.4356e-08 2.4359e-08

R

Weight k

9.533690

9.533695

9.533700

2.43549e-08 2.43551e-08 2.43553e-08 2.43555e-08

R

Weight k

9.5336950

9.5336952

9.5336954

9.5336956

2.435523e-08 2.435525e-08 2.435526e-08 2.435528e-08

R

Weight k

9.53369515

9.53369520

9.53369525

9.53369530

9.53369535

2.4355247e-08 2.4355252e-08 2.4355257e-08

R

Weight k

9.533695256

9.533695258

9.533695260

9.533695262

9.533695264

2.43552545e-08 2.43552547e-08 2.43552549e-08

R

Weight k

eigenvalues:

Rk =
2πk

ln
(

7+2
√

12
) , k ∈ Z+.

Note that the actual error is in general much smaller than the error-parameter which is basically
H(Y1,Y2) = |c(2)− c′(2)|+ |c(3)− c′(3)|+ |c(4)− c′(4)|, where c(n) is computed with Y1 and c′(n)
with Y2.
8.4. Half integer weight

We now consider the case of Γ0(4) and the θ-multiplier system for weight k = 1
2 . The aim of our

investigation in this case was to study the Shimura lift, and in particular to investigate the dimensions of
the spaces of half integer weight forms. As remarked at the end of section 6 several properties of the
Shimura correspondence were observed numerically, and in the original version of these notes, [64, ch.
2], we formulated a number of experimentally inspired conjectures. Except for the question of injectivity
these conjectures have now been resolved with Propositions 6.1 and 6.3. (With the obvious correction
in the first conjecture: the dimension of M(Γ0(4),vθ,

1
2 ,R) corresponding to an oldspace is at least two

dimensional.)
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Tables 5 and 6 contain examples of Fourier coefficients at weight 1
2 . Note especially in table 6 the

agreement with Proposition 6.3 c) displayed by the Fourier coefficients c(n) for n ≡ 5,1 mod 8 respec-
tively. Here, it is known that 8.92287648699174 and 12.09299487507860 on Γ0(2) correspond to the
eigenvalues 1 and −1, respectively, with respect to the involution ω2.

Table 8 contains a comparison of Fourier coefficients computed both from forms on Γ0(2) via (6.1)
and computed directly. Additional Fourier coefficients for the weight 0 forms are available in Table 7.

Acknowledgement. This paper is based on Chapter 2 of my Ph.D. thesis [64] but with additional theo-
retical discussions in e.g. Section 6 and 4.5. I am grateful to my advisor Dennis Hejhal and my second
advisor Andreas Strömbergsson for many giving discussions and lots of valuable comments and sugges-
tions.
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Table 1: Eigenvalues for N = 1, v = vη

k = 5.0
R |c(−1)|a H(y1,y2)

3.66240686691 2E+3 8E-09
5.77698688079 6E+3 1E-09
6.64285171609 1E+4 2E-09
7.82634704661 7E+4 8E-07
8.66620831839 8E+4 1E-08
9.45156176778 4E+4 4E-09

10.21802876612 9E+4 2E-08
10.65897262925 2E+5 5E-09
11.27526358329 2E+5 2E-08
12.15792337439 5E+6 2E-06
12.55403510011 3E+5 3E-09
13.00123950671 4E+4 2E-09
13.67542640619 8E+5 8E-09
13.71353384347 4E+6 4E-07
14.47039277248 6E+5 1E-09
15.03845367363 1E+6 6E-09
15.39856858318 1E+6 1E-09
15.85705128856 7E+4 7E-09
16.14536205683 5E+6 2E-07
16.45061260141 2E+6 1E-08
16.93043847901 2E+7 2E-08
17.51562192888 2E+5 4E-09
17.59022138300 1E+6 6E-10
18.13826107361 7E+6 2E-08
18.32637702289 5E+5 5E-09
18.76341585136 2E+6 5E-09
19.16629116326 4E+6 8E-10
19.67214438521 3E+7 2E-07
19.68520099819 1E+6 3E-10
20.00524829746 2E+6 4E-09
20.38266630653 3E+6 3E-10
20.67297062056 6E+6 4E-08
20.97339376061 6E+6 8E-10

k = 5.25
R |c(−1)|a H(y1,y2)

3.68037312372 3E+3 3E-08
5.82067054942 9E+3 6E-09
6.63460520751 2E+4 3E-09
7.90867228426 2E+5 9E-09
8.61646891946 1E+5 8E-09
9.56930344151 7E+4 5E-09

10.15656706121 2E+5 2E-09
10.70911890024 2E+5 4E-10
11.34046324165 4E+5 2E-08
12.11839521329 4E+6 2E-06
12.65021958486 4E+5 9E-09
13.02622821839 8E+4 2E-09
13.56022943627 1E+6 1E-07
13.87057635696 7E+5 4E-07
14.48204838116 1E+6 7E-05
15.09966704087 4E+7 1E-07
15.38981845044 1E+6 4E-09
15.94059443942 1E+4 3E-09
16.09999759486 8E+6 7E-06
16.52671557073 5E+6 1E-09
16.90856097808 2E+7 5E-08
17.53730159778 1E+6 3E-10
17.74142373355 7E+6 4E-09
18.02022951826 6E+6 9E-10
18.37970066644 8E+5 2E-09
18.90587158951 1E+7 8E-09
19.09726131554 1E+7 5E-10
19.66894569593 5E+6 3E-10
19.73195996101 7E+6 4E-10
20.12609436572 2E+6 3E-10
20.35571778301 1E+7 7E-10
20.71020380483 6E+6 8E-09
20.88321504381 1E+7 2E-09

a The normalization we have used here is the usual c(1) = 1.
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Table 2: Fourier coefficients for a CM-form
f ∈M(Γ0(1),v2

η,1,4.770984191561)

n c(n)/c(0)a Error
0 1.755930576575
1 1.000000000000
2 −1.755930576574 c(27) 0.4E-08
3 1.571810322167 c(40) 0.1E-08
4 1.755930576575 c(53) 0.7E-08
5 −1.770268323978 c(66) 0.3E-09
6 −2.474798320759 c(79) 0.1E-08
7 0.000000000000 c(92) 0.4E-08
8 0.346240855507 c(105) 0.5E-08
9 3.510179255561 c(118) 0.3E-08

10 1.116593241680 c(131) 0.4E-08
11 −0.000000000001 c(144) 0.3E-08
12 0.000000000001 c(157) 0.1E-07
13 −3.019229958496 c(170) 0.8E-08
14 −1.186431979458 c(183)+ c(1) 0.3E-08
15 −3.079783541463 c(196) 0.5E-08

−c(n)c(−1)/R2/c(0)
−1 5.055064268188 b 0.1E-11
−2 −11.180067729976 c(21) 0.4E-07
−3 0.000000000001 c(32) 0.2E-07
−4 16.472675660354 c(43) 0.2E-08
−5 16.729030199659 c(54) 0.5E-07
−6 13.098490835617 c(65) 0.5E-08
−7 16.046414105740 c(76) 0.1E-07
−8 −0.000000000023 c(87) 0.1E-07
−9 13.340740291248 c(98) 0.3E-07
−10 0.000000000006 c(109) 0.4E-07
−11 2.151215034503 c(120) 0.7E-08
−12 2.878852009050 c(131)− c(1) 0.2E-07
−13 0.000000000039 c(142) 0.6E-08
−14 7.496795049955 c(153) 0.4E-07
−15 −12.830881007618 c(164) 0.4E-07
a This quotient is deduced from formula (4.16) or (4.17) on p.

14.
b c(−1)2 =−R2c(0)(c(10)− c(0))
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Table 3: Fourier coefficients for a non-CM-form
f ∈M(Γ0(1),v2

η,1,3.66240686698667)

n c(n)/c(0)a Error
0 −1.352193685534
1 1.000000000000
2 −1.697113317091 c(27) 0.5E-08
3 −0.057989599353 c(40) 0.4E-07
4 2.461764397786 c(53) 0.1E-07
5 0.510856433057 c(66) 0.6E-08
6 −0.952325903762 c(79) 0.8E-08
7 −1.660630683908 c(92) 0.2E-07
8 −2.343382246022 c(105) 0.9E-08
9 1.271097206907 c(118) 0.1E-07

10 −0.203512820511 c(131) 0.6E-08
11 2.110622602834 c(144) 0.5E-08
12 2.170616908700 c(157) 0.4E-08
13 0.449799127363 c(170) 0.4E-07
14 0.612654661780 c(183)+ c(1) 0.4E-07
15 −1.684453740441 c(196) 0.1E-07
16 0.400312170289 c(209) 0.2E-07
17 −2.868395110060 c(222) 0.1E-07
18 −1.931595991172 c(235) 0.2E-07
19 −0.591212766919 c(248) 0.1E-07
20 0.792151138999 c(261) 0.9E-08
21 −1.717242193922 c(274) 0.3E-07
22 1.369169138277 c(287) 0.2E-07
23 2.007854712832 c(300) 0.8E-09
24 0.447826147902 c(313) 0.1E-07
25 3.051006373828 c(326) 0.4E-08
26 −0.032419986064 c(339) 0.6E-08
27 1.255081531820 c(352)+a(2) 0.2E-07
28 −0.707047087424 c(365) 0.3E-07
29 1.272283355260 c(378) 0.1E-07
30 −0.184187214400 c(391) 0.2E-07
a This quotient is deduced from formula (4.16) or

(4.17) on p. 14.
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Table 4: Eigenvalues for M(PSL(2,Z),1,v2
η)

R H(y1,y2) True error a

2.38549209578045 1E-12 1E-15 b

3.66240686698667 1E-11
4.77098419156091 1E-13 1E-14 b

5.77698688078694 6E-12
6.64285171613711 1E-11
7.15647628734173 1E-11 4E-13 b

7.82634704540775 1E-13
8.66620831896793 7E-14
9.45156176783224 7E-12
9.54196838312186 2E-13 6E-14 b

10.21802876776059 3E-13
10.65897262920241 2E-12
11.27526358349387 2E-13
11.92746047890219 7E-11 5E-14 b

12.15792337422149 7E-13
12.55403509998720 1E-13
13.00123950642372 9E-13
13.67542640643589 2E-13
13.71353384358095 1E-12
14.31295257468268 1E-12 1E-14 b

14.47039277253940 1E-12
15.03845367358721 2E-13
15.39856858348441 1E-12
15.85705128717333 3E-10
16.14536205734475 3E-11
16.45061260131967 4E-11
16.69844467046304 4E-12 1E-13 a

16.93043847896222 4E-15
17.51562192885174 2E-10
17.59022138305996 1E-10
18.13826107340244 3E-11
18.32637702205910 4E-11
18.76341585146817 1E-11
a For CM-forms, the true error is computed

with respect to the eigenvalue Rk = 2πk
ln(η0) ,

where η0 = 7+2
√

12.
b These forms correspond to CM-forms.
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Table 5: Fourier coefficients for
f1,2 ∈M(Γ0(4), 1

2 ,6.889875675945)

Fourier coefficients for f1 ∈V +, observe that a(n) = 0 for n ≡ 2,3 mod 4
n a(n)
4 0.84219769675471
5 0.18355821406443
8 0.56907998524429
9 −0.33045049673565

12 −0.41296169213831
13 0.60153537988057
16 0.30482066289397
17 −0.88689598690620
20 0.41418282092059
21 0.50212917023175
23 −0.00000000000110
24 −1.04429548341249
25 0.28984678984391

n a(−n)
3 1.01825299171456
4 2.18968040385979
7 2.06305218095270
8 −1.17157116610978

11 −1.02718719694121
12 2.29759751514531
15 −4.08935474990375
16 3.39248165496032
19 −1.31804633824673
20 1.87725570455517
23 −2.22265197818114
24 0.58816620330140

|c(4)c(9)− c(36)|= 0.2E−08
Fourier coefficients for f2 6∈V +, observe that a(n) = 0 for n ≡ 1 mod 8

n a(n) n a(n)
0 0.000000000000 19 −0.936283350934
1 0.000000000000 20 0.192087703124
2 1.000000000000 21 1.247834928335
3 −0.725665465042 22 0.411443268212
4 −0.710754741008 23 −0.018564690418
5 0.456158224759 24 −1.297582830232
6 −1.835059236817 25 0.000000000000
7 0.481289183972 26 −0.610656711780
8 0.707106781187 27 −0.179166638197
9 0.000000000000 28 0.340322845698

10 −0.651049038069 29 0.001563849679
11 −0.470914040036 30 1.462745418892
12 −0.513122971204 31 0.400763051265
13 1.494868058150 32 0.095523702475
14 0.968484734380 33 0.000000000000
15 −0.945563574521 34 −0.879782299796
16 −1.101175502961 35 −1.833603623066
17 0.000000000000 36 0.234869257223
18 0.824250041644
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Table 6: Fourier coefficients for f ∈M
(
Γ0(4), 1

2 ,R
)

R = 4.461438243496
n a(n)
0 0.00000000000000
1 1.00000000000000
2 0.63334968449036
3 0.63517832947402
4 −0.70710678118667
5 −0.00000000000003
6 1.28035706400142
7 −0.90756258916698
8 −0.44784585676555
9 0.52643872643776

10 −0.57763498966972
11 1.12485377915641
12 −0.44913890403389
13 0.00000000000001
14 0.48078071833327
15 −1.58539012005784
16 0.50000000000015
17 −0.14882069214483
18 1.06474902295605
19 0.21268916863632
20 0.00000000000003
21 0.00000000000002
22 −1.56248056455209
23 0.85478501960318
24 −0.90534916229569
25 0.45696099733973
36 −0.37224839333969
|c(4)c(9)− c(36)|= 4E−12

|c(21)|= 2E−14

R = 6.046497437542
n a(n)
0 0.000000000000
1 0.000000000000
2 1.000000000000
3 1.770795863371
4 0.000000000029
5 1.331470494003
6 −0.749395507674
7 0.074369313625
8 0.707106781209
9 −0.000000000016

10 −1.214451367832
11 0.620756243833
12 1.252141763204
13 −1.123686021586
14 −0.711286031630
15 0.964706032413
16 −0.000000000112
17 −0.000000000108
18 −0.128644484609
19 −0.499664871594
20 0.941491814843
21 −0.447011950327
22 −0.805501416928
23 1.236716356721
24 −0.529902643583
25 0.000000008756
36 −0.000000000168

288 −0.064322242377
|c(2 ·32)c(2 ·42)− c(2 ·122)|= 8E−11

|c(17)|= 1E−10
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Table 7: Supplemental table of Fourier coefficients for M(Γ0(2),0,R)

R 8.92287648699174
n A(n)
2 −0.70710678118654
3 1.10378899562734
4 0.49999999999993
5 0.90417459283958
6 −0.78049668380711
7 0.82934246755499
8 −0.35355339059330
9 0.21835014686776

10 −0.63934798597339

R 12.0929948750786
n A(n)
2 0.70710678118655
3 −0.70599475399569
4 0.49999999999999
5 −0.79974825694039
6 −0.49921367803249
7 −1.71337067862845
8 0.35355339059328
9 −0.50157140733054

10 −0.56550741572467

R 13.77975135189073
(even wrt z 7→ − 1

2z )
n A(n)
2 2.96351804031448
3 0.24689977245401
4 3.59139177031902
5 0.73706038534834
6 0.73169192981688
7 −0.26142007576500
8 2.60064131148226
9 −0.93904050235826

10 2.18429174878080

R 13.77975135189073
(odd wrt z 7→ − 1

2z )
n A(n)
2 0.13509091556820
3 0.24689977245398
4 −0.79070303958101
5 0.73706038534830
6 0.03335391631439
7 −0.26142007576538
8 −1.36013067551284
9 −0.93904050236089

10 0.09957016228575
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Table 8: Comparison of Fourier coefficients A(n) computed directly for M(Γ0(N),0,R) (N = 1,2), vs
Â(n) computed on M

(
Γ0(4), 1

2 , 1
2 R
)

and using (6.1).

n Â(n) A(n) |A(n)− Â(n)|
f ∈M(Γ0(2),0,8.922876486992) (t = 1)

2 −0.70710678118665 −0.707106781186 0.6E−12
3 1.10378899562739 1.103788995627 0.4E−12
5 0.90417459283969 0.904174592840 0.3E−12

f ⊆M(Γ0(1),0,13.779751351891) (t = 1)
2 1.54930447794126 1.549304477941 0.7E−12
3 0.24689977245398 0.246899772454 0.3E−12
4 1.40034436536892 1.400344365369 0.2E−12
5 0.73706038534387 0.737060385348 0.4E−11
6 0.38252292109716 0.382522923066 0.2E−08

f ∈M(Γ0(1),0,13.779751351891) (t = 2)
3 0.24689977245437 0.246899772454 0.8E−13
5 0.73706038535004 0.737060385348 0.2E−11
7 −0.26142007624377 −0.261420075765 0.5E−09
9 −0.93904050238904 −0.939040502362 0.3E−10

f ∈M(Γ0(2),0,12.092994875079) (t = 2)
3 −0.70599475379863 −0.705994753996 0.2E−09
5 −0.79974825694696 −0.799748256940 0.7E−11
7 −1.71337067860377 −1.713370678628 0.2E−10
9 −0.50157140750090 −0.501571407330 0.2E−09
In segment 3, the calculation is based on (6.1) and the second portion of Table 5.
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Table 9: Comparison of Fourier coefficients for weights k = 9.044605824E − 08 and k = 0 near an
“avoided crossing”.

Corresponds to the cusp form
k
R

c(2)
c(3)
c(4)
c(5)
c(6)

9.0446058240E−08
13.77975135189074

1.54930480559976
0.24689988546553
1.40034433555250
0.73706067260516
0.38252272069428

0
13.77975135189074

1.54930447794069
0.24689977245411
1.40034436536841
0.73706038534787
0.38252292306557

Difference

0.3E−06
0.1E−06
0.1E−06
0.2E−06
0.2E−06

Corresponds to the Eisenstein series
k
R

c(2)
c(3)
c(4)
c(5)
c(6)

9.0446058240E−08
13.77975135138225
−2.06525760334129
−1.72891679536648

2.97153986917404
−2.02747287754385

3.41008729668221

0
13.77975135138225
−1.98398933080188
−1.68449330640991

2.93621366473571
−1.96531634618530

3.34201674772446

Difference

0.8E−01
0.4E−01
0.4E−01
0.6E−01
0.7E−01

The coefficients for the Eisenstein series at k = 0 were computed using (5.1), i.e.:
c(2) = 2cos(R ln2)
c(3) = 2cos(R ln3)
c(4) = 1+2cos(R ln4)
c(5) = 2cos(R ln5)
c(6) = 2cos(R ln6)+2cos(R(ln3− ln2))

Table 10: Comparison of Fourier coefficients for weights k = 9.044605824E −08 and k = 0 “far” from
an ”avoided crossing”. The weight 0 coefficients were computed using the formulas in Table 9.

k
R

c(2)
c(3)
c(4)
c(5)
c(6)

9.0446058240E−08
13.62696884857618
−1.99957085683552
−1.48069687587703

2.99828354611637
−1.99647405201235

2.96075820067617

0
13.62696884857618
−1.99957081810438
−1.48069680342062

2.99828345661464
−1.99647406885962

2.96075811858031

Difference

0.4E−07
0.7E−07
0.7E−07
0.2E−07
0.8E−07
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