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Abstract

Matrix representations of Hecke operators on classical holomorphi-
cal cusp forms and corresponding period polynomials are well known.
In this article we define Hecke operators on period functions intro-
duced recently by Lewis and Zagier and show how they are related
to the Hecke operators on Maass cusp forms. Moreover we give an
explicit general compatibility criterion for formal sums of matrices to
represent Hecke operators on period functions. An explicit example of
such matrices with only nonnegative entries is constructed.
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1 Introduction

Recently, J. Lewis and D. Zagier introduced in [4] period functions general-
izing Eichler, Manin and Shimura’s theory of period polynomials to Maass
cusp forms.

For s ∈ C with Re(s) > 0 a period function ψ for PSL(2,Z) with pa-
rameter s is a holomorphic function on the cut plane C′ := C r (−∞, 0]
satisfying the three term equation

ψ(z) = ψ(z + 1) + (z + 1)−2sψ(
z

z + 1
)(1)

and the growth condition

ψ(z) �







|Im(z)|−A(1 + |z|2A−2σ) if Re(z) ≤ 0,
1 if Re(z) ≥ 0, |z| ≤ 1 and
|z|−2σ if Re(z) ≥ 0, |z| ≥ 1.

(2)

We denote the space of period functions with parameter s by FE∗
s. A period

like function ψ : C′ → C with parameter s is a holomorphic function satis-
fying the three term equation (1). The space of period like functions with
parameter s is denoted by FEs. Thus FE∗

s is a subspace of FEs.
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The period functions generalize the period polynomials and rational pe-
riod functions for holomorphic automorphic forms of PSL(2,Z). It is shown
in [4] how the period functions are related to Maass wave forms for the full
modular group.

For positive integer m let Matm(Z) denote the set of 2×2 matrices with
integer entries and determinant m. For m ∈ N put Mm = Matm(Z)/{±1}.
In particular M1 = PSL(2,Z) is the projective modular group. If the matrix
(

a
c

b
d

)

represents an element g ∈ Mm then
(

−a
−c

−b
−d

)

represents the same

element g. Being imprecise, we often identify g with
(

a
c

b
d

)

. For each m,n ∈
N matrix multiplication induces the map

Mm ×Mn → Mmn; (gm, gn) → gm · gn.

Hence the group M1 acts on Mm by left multiplication. This action is free
since the equality γg = g for each g ∈ Mm implies γ = I ∈ M1.

We denote by Rm the additive group Z[Mm] of finite Z-linear combi-
nations of elements in Mm. An element A ∈ Rm is a formal finite sum
A =

∑

i αi gi with αi ∈ Z and gi ∈ Mm for all i and gi 6= gj for all i 6= j.
We assume gi 6= gj in the formal sums throughout the section. If we write
−A we mean (−1) ·A in Rm with −1 ∈ Z, i.e., −A =

∑

i(−αi) gi. The zero
elements in Rm are those for which αi = 0 for all i. We have RmRn ⊂ Rmn

for all m,n > 0; in particular, each Rm is a left module over the group ring
R1. We can extend the action of M1 on Mm to an action of R1 on Rm by
linearity. We denote by R∗ =

⊕∞
n=1 Rn the ring of Z-linear combinations.

Let M+
m ⊂ Mm be the subset of elements which can be represented

by matrices in Matm(Z) with nonnegative entries. The set M+
m can be

characterized also as the largest subset of Mm satisfying gC′ ⊂ C
′ for any

element g ∈ M+
m. The matrix representation

(

a
c

b
d

)

of an element g ∈ M+
m

has either nonpositive or nonnegative entries. If not stated otherwise, we
identify M+

m with the subset Mat+
m(Z) of Matm(Z) which contains only

nonnegative entries. We put R+
m = Z[M+

m] ⊂ Rm for all m ∈ N and
R+

∗ =
⊕∞

n=1 R+
n . Thus R∗ and R+

∗ are (non commutative) rings with
unit and are ”multiplicatively graded“ in the sense that RmRn ⊂ Rmn and
R+

mR+
n ⊂ R+

mn respectively. In particular, each Rm and R+
m is a left and

right module over the group ring R1 and R+
1 respectively.

An important role in the theory of Maass cusp forms play Hecke op-
erators. They can be represented by certain elements of R∗. For the full
modular group, for example, the mth Hecke operator has the representation
(see e.g. [6])

T∞
m =

∑

ad=m
0≤b<d

(

a
0

b
d

)

∈ Rm.(3)

In [5] Ju. Manin gave the following representation for the Hecke operators

2



in Rm acting on period polynomials:

T̃ ∗
m =

∑

ad−bc=m
a>c>0

d>−b>0

[(

a b
c d

)

+

(

a −b
−c d

)]

(4)

+
∑

ad=m

− 1
2 d<b≤ 1

2 d

(

a b
0 d

)

+
∑

ad=m

− 1
2 a<c≤ 1

2 a

c6=0

(

a 0
c d

)

.

This representation however cannot be used for period functions since the
matrices occurring in (4) do not always preserve the cut plane C′. In this
paper we will derive an explicit and simple representation for the Hecke
operators on period functions.

In [1] Choie and Zagier gave a simple compatibility criterion to represent
Hecke operators on period polynomials or rational period functions. To
formulate this criterion consider the matrices S, T , T ′, U ∈ M1 with

S =
(0

1
−1
0

)

, T =
(1

0
1
1

)

, T ′ =
(1

1
0
1

)

, and U =
(1

1
−1
0

)

(5)

and the right ideal J of R1 with

J = (1 + S)R1 + (1 + U + U 2)R1.(6)

In [1] these authors proved

Theorem 1 For each integer m ≥ 1, the representation T∞
m of the mth

Hecke operator fulfills the relations

T∞
m (T − 1) ≡ 0, T∞

m (S − 1) ≡ (S − 1)T̃CZ
m (mod (T − 1)Rm)(7)

for a certain element T̃CZ
m ∈ Rm, which is unique modulo JRm and satisfies

T̃CZ
m J ⊂ JRm. The elements T̃CZ

n , T̃CZ
m ∈ R∗ satisfy the product formula

T̃CZ
n T̃CZ

m =
∑

d| gcd(n,m)

d−1
(

d
0

0
d

)

T̃CZ
nm

d2
(mod JRnm).(8)

It is shown in [1] that the element T̃ ∗
m in (4) indeed satisfies (7). Here we

will prove a modified version of Theorem 1 suitable for period functions.

Let us briefly recall the so called slash action. For s ∈ C, f a function on

H = {z ∈ C; Im(z) > 0}, on C r R or on C′ and g =
(

a
c

b
d

)

a 2 × 2 matrix,

the slash action of g on f = f(z) is defined as

(f |sg) (z) := |det g| s
2 (cz + d)−s f

(

az + b

cz + d

)

.(9)

Thereby we use the argument convention −π < arg(z) ≤ π. For general
complex s the slash action is obviously not well defined. However, it is well
defined for
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• all g ∈ Matn(Z) and f a function on H for s ∈ 2Z and

• all g ∈ Mat+n (Z) and f a function on C
′ for arbitrary complex s.

The last statement is proven in §3 of [3]. As usual, we extend the slash
action linearly to R∗ and R+

∗ respectively.

2 Statement of the results

Theorem 2 For each integer m ≥ 1, the representation T∞
m of the mth

Hecke operator fulfills the relations

T∞
m (T − 1) ≡ 0, T∞

m (S − 1) ≡ (S − 1)T̃m (mod (T − 1)Rm)(10)

for a certain element T̃m ∈ R+
m, which is unique modulo (1 − T − T ′)R+

m

and satisfies T̃m(1 − T − T ′) ⊂ (1 − T − T ′)Rm. Furthermore, the elements
T̃n, T̃m ∈ R+

∗ satisfy the product formula

T̃n T̃m =
∑

d|(n,m)

d−1
(

d
0

0
d

)

T̃nm

d2
(mod (1 − T − T ′)R+

nm)).(11)

Theorem 2 allows us to define Hecke like operators for period like func-
tions.

Definition 3 For each m ∈ N choose an element T̃m ∈ R+
m which satisfies

the compatibility criterion (10). The mth Hecke like operator on FEs for
s ∈ C is then given by

T̃m : FEs → FEs with T̃m(ψ) = ψ|2sT̃m.(12)

This definition makes sense since Theorem 2 ensures that ψ|2sT̃m satisfies
the three term equation (1). We will show in Corollary 9 that the Hecke like
operators are indeed induced by the Hecke operators on Maass cusp forms.

Define the transpose of an element
∑

(

a
c

b
d

)

∈ Rm as

(

∑

(

a
c

b
d

))tr
=

∑

(

a
b

c
d

)

.

Then one shows

Proposition 4 For m ∈ N define

T̃+
m =

∑

a>c≥0
d>b≥0

ad−bc=m

(

a b
c d

)

.(13)

The element T̃+
m belongs to R+

m and satisfies the compatibility criterion (10).
Furthermore we have

T̃+
m(1 − T − T ′) = (1 − T − T ′)

(

T̃+
m

)tr
.(14)
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Hence T̃+
m is an explicit solution of the compatibility criterion (10). The

obvious advantage of T̃+
m is its simple structure compared to T̃ ∗

m in (4).

The main point of our discussion is the relation to the Hecke operators
on Maass cusp forms. Fir this we briefly recall the definition of Maass cusp
forms.

Definition 5 A real-analytic function u : H → C is called a Maass cusp
form for the full modular group M1 with spectral parameter s ∈ C if u
satisfies the following conditions:

1. u(gz) = u(z) for all g ∈ M1 and z ∈ H,

2. ∆u = s(1 − s)u where ∆ = −y2(∂2
x + ∂2

y) is the hyperbolic Laplace
operator and

3. u(z) = O
(

Im(z)C
)

as Im(z) → ∞ for all C ∈ R.

We denote the space of Maass cusp forms with spectral value s by S(s).

Each Maass cusp form u ∈ S(s) has a two sided Fourier expansion of the
form

u(z) =
√
y

∑

n∈Z 6=0

anKs− 1
2
(2π|n|y) e2πinx for all z = x+ iy ∈ H.(15)

where the function Kν : R>0 → C is the K-Bessel function.
It is known that dimS(s) 6= 0 implies Re(s) = 1

2 and Im(s) 6= 0 and that
the Maass forms are invariant under s 7→ 1 − s and hence under s 7→ s̄.

Definition 6 The mth Hecke operator Tm on Maass cusp forms with spec-
tral value s is the operator

Tm : S(s) → S(s) with Tm(u) = u|0T∞
m .

J. Lewis and D. Zagier have recently shown in [4] that S(s) is in 1-1
correspondence to FE∗

s. Indeed, they have proved the following

Theorem 7 Let s be a complex number with σ := Re(s) > 0. Then there
are canonical correspondences between objects of the following three types:

(a) a Maass cusp form u with spectral parameter s;

(b) a holomorphic function f(z) on C r R, invariant under z 7→ z + 1 and
bounded by Im(z)−A for some A > 0, such that the function f(z) −
z−2s f(−1/z) extends holomorphically across the positive real axis and
is bounded by a multiple of min{1, |z|−2σ} in the right half-plane;
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(c) a period function ψ ∈ FE∗
s.

If u has the Fourier expansion (15) with Fourier coefficients an then f is
given by

f(z) =

{

∑

n>0 n
s− 1

2 an e
2πinz if Im(z) > 0,

−∑

n<0 |n|s−
1
2 an e

2πinz if Im(z) < 0.
(16)

The period function ψ if given by

c(s)ψ(z) = f(z) − z−2s f(
−1

z
) for z ∈ C r R(17)

where c(s) is a non-vanishing constant depending on s.

We then say that f and ψ are the periodic respectively period function of
the Maass cusp form u if u and f have the expansions (15) and (16) and if
ψ satisfies (17).

Theorem 8 Let u be a Maass cusp form with spectral parameter s with
Re(s) > 0 and ψ the period function of u. For each integer m ≥ 1 the
function ψ|2sT̃

+
m is then the period function of u|0T∞

m .

A direct consequence is

Corollary 9 For each integer m ≥ 1 a formal sum T̃m ∈ R+
m satisfying

(10) gives a representation of the mth Hecke operator on FEs. For u ∈ S(s)
and its period function ψ ∈ FE∗

s the function ψ|2sT̃m is the period function
associated to u|0T∞

m .

Proof of Corollary 9. Theorem 8 shows that ψ|2sT̃
+
m is the period function

of u|0T∞
m . Since T̃+

m satisfies the compatibility condition (10) and relation
T̃+

m ≡ T̃m modulo (1 − T − T ′)R+
m by Theorem 2 it follows that ψ|2sT̃

+
m =

ψ|2sT̃m. �

3 Graphs representing elements in Rm

Consider elements A,B ∈ Rm such that

ξ = (1 + S)A+ (1 + U + U 2)B ∈ R+
m.(18)

Then ξ in (18) is contained in (1 − T − T ′)R+
m. Indeed we have

Proposition 10 Assume that A and B are elements in Rm satisfying (18).
Then there exist a D ∈ R+

m such that

(1 + S)A+ (1 + U + U 2)B = (1 − T − T ′)D ∈ R+
m

6



This on the other hand implies

Corollary 11 For all m ∈ N

[(1 + S)Rm + (1 + U + U 2)Rm] ∩R+
m = (1 − T − T ′)R+

m.

Proof of Corollary 11. Proposition 10 shows the inclusion “⊂”. For the
inclusion “⊃” consider any A ∈ R+

m. Then obviously

(1 − T − T ′)A = (1 + S)A+ (1 + U + U 2)(−SA) ∈ R+
m

since T = US and T ′ = U2S and A, TA and T ′A ∈ R+
m. �

Before proving Proposition 10 at the end of this subsection we discuss
some elementary properties of Mm and M+

m.

Lemma 12 For each g ∈ Mm one has

1. at most two of the three elements g, Ug and U 2g are in M+
m;

2. if Ug and U 2g are both in M+
m, then Sg ∈ M+

m;

3. if g ∈ M+
m then Sg 6∈ M+

m.

Proof . For g =
(

a
c

b
d

)

∈ M+
m with only nonnegative entries we have

Sg =
(

−c
a

−d
b

)

. Obviously Sg 6∈ M+
m since at least one of the two matrix

entries −c and −d is negative. This proves Statement 3 of Lemma 12.

To prove the first statement we assume that all three matrices g =
(

a
c

b
d

)

,

Ug and U 2g are in M+
m. Since g ∈ M+

m the entries a, b, c and d are

nonnegative. Since Ug =
(

a−c
a

b−d
b

)

∈ M+
m the inequalities a − c ≥ 0 and

b− d ≥ 0 hold. The last assumption U 2g =
(

−c
a−c

−d
b−d

)

∈ M+
m implies that

c ≤ 0 and d ≤ 0 and hence c = d = 0 contradicting g ∈ Mm.

To prove Statement 2 of the Lemma we may choose g =
(

a
c

b
d

)

∈ Mm

such that Ug =
(

a−c
a

b−d
b

)

∈ M+
m has only nonnegative entries. Then

also U2g =
(

−c
a−c

−d
b−d

)

∈ M+
m has only nonnegative entries since a − c and

b − d are nonnegative. Therefore a, b, −c and −d are nonnegative and

Sg =
(

−c
a

−d
b

)

∈ M+
m. �

Lemma 13 For A,B ∈ Rm there exist A− ∈ Rm and an unique A+ ∈ R+
m

such that the following relations hold:

1. (1 + S)A+ (1 + U + U 2)B
= (1 + S)A− + (1 + U + U 2)(B + SA+) + (1 − T − T ′)A+,
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2. (1 + S)A = (1 + S)A+ + (1 + S)A− and

3. if A− =
∑

i αigi then both gi and Sgi are not in M+
m for all i.

Proof . We may assume that A =
∑

j βjhj ∈ Rm satisfies Shj 6∈ M+
m.

Indeed if Shj ∈ M+
m then we can replace hj by h′j = Shj in the expression

for A. This does not change the formal sum (1 + S)A. Moreover, it ensures
that all elements Shj in (1+S)A are not in M+

m (see item 3 of Lemma 12).
Define next A+ and A− as

A+ =
∑

j;hj∈M
+
m

βjhj and A− =
∑

j;hj 6∈M
+
m

βjhj .

Then A+ is uniquely determined by A since A+ contains all elements of
the expression (1 + S)A in R+

m. The assumption on A and the definition
of A− imply that (1 + S)A− =

∑

j;hj 6∈M
+
m
βj(hj + Shj) does not contain

any matrices hj and Shj in M+
m. Hence items 2 and 3 of the lemma follow

immediately.
A simple calculation shows that

(1 + S)A+ (1 + U + U 2)B

= (1 + S)A− + (1 + S)A+ + (1 + U + U 2)B

= (1 + S)A− + (1 + U + U 2)(B + SA+) + (1 − T − T ′)A+

since T = US and T ′ = U2S. �

We find it most helpful to visualize with graphs the space Mm and the
free action by left multiplication of M1 on Mm:

Consider the oriented graph G̃ whose vertices are the elements of Mm

and whose oriented edges are the pairs (g1, g2) ∈ Mm × Mm satisfying
g2 = Ug1 or g2 = Sg1. For each g ∈ Mm, we say that (g, Ug) is an U -edge
and (g, Sg) is an S-edge.

Consider the finite sequence of vertices (g1, . . . , gM ) such that

i. any two vertices gi, gj , i 6= j, satisfy gi 6= gj and

ii. the pair (gi, gi+1) is an edge all i = 1 . . . M , where gM+1 = g1 such
that (gi, gi+1) 6= (gj , gj+1) for all i 6= j.

We say that two sequences (g1, . . . , gM ) and (h1, . . . , hM ) of the same length
M are equivalent if

(h1, . . . , hM ) = (gn, . . . gM , g1, . . . , gn−1) for some n ∈ {1, . . . ,M}.

A cycle of length M is an equivalence class of such sequences.
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Simple examples of cycles are the equivalence classes of pairs (g, Sg) and
triples (g, Ug, U 2g), g ∈ Mm, since S2 = U3 = I. For each g ∈ Mm, we call
the former equivalence class the S-segment of g and the latter equivalence
class the U -triangle of g. There are no cycles of length 1, since the pair
(g, g) is not an edge.

Lemma 14 The only cycles in G̃ are S-segments and U -triples.

Proof . The idea is to reduce this question to the generators S and U of
the group PSL(2,Z).

Let (g1, . . . , gM ) be a sequence representing a cycle of length M > 1.
There exist M elements γi ∈ {S,U} ⊂ M1 such that gi+1 = γigi for all
i = 1, . . . ,M where gM+1 = g1. We have

g1 = γM · · · γ1g1 and gn 6= γn−1 · · · γ1g1 for all n = 2, . . . ,M.(19)

It follows that γM · · · γ1 = I and γn−1 · · · γ1g1 6= I for all n = 2, . . . ,M
since M1 acts freely on Mm. Depending on the length M of the cycle, the
following possibilities of the γi’s appear:

• For M = 2 the only possibility is γ1 = γ2 = S since S2 = I.

• For M = 3 the only possibility is γ1 = γ2 = γ3 = U since U 3 = I.

• For M > 3 relation (19) for equivalent sequences implies that

γM+j−1 · · · γj = I for all 1 ≤ j ≤M and

γn+j−1 · · · γj 6= I for all 1 ≤ j ≤M and n < M.

Here we use γM+i = γi for all i = 1, . . . ,M . In particular there are
no two succeeding S’s or three succeeding U ’s in the sequence (γi).
Hence, the relation

∏1
i=M γi = I does neither contain S2 nor U3. This

contradicts the fact that the elements S and U generate M1 with

M1 = PSL(2,Z) =< S,U |S2 = U3 = I > .

�

We construct next a non-oriented graph G: The vertices of G are the
same as those of G̃. The edges are the edges of G̃ without orientation,
obtained by identifying the edges (g, Sg) and (Sg, g) with each other. Every
edge of G can be represented by an unordered pair of the form {g, Ug} or
{g, Sg}, g ∈ Mn.

Each U -triangle (g, Ug, U 2g) of G̃ induces three edges {g, Ug}, {Ug,U 2g}
and {U2g, g} in G which form a triangle. We call such a triangle on G also
an U -triangle. Each S-segment (g, Sg) of G̃ induces the edge {g, Sg} in G.
We call such an edge also an S-segment.

We label the vertices of G as follows: for each g ∈ Mm, the vertex g has
the label “+” if g ∈ M+

m and “−” if g 6∈ M+
m.
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Lemma 15 Let A− ∈ Rm satisfy item 3 of Lemma 13. Assume that A :=
A− and B satisfy (18). Then A− = B = 0 ∈ Rm.

Proof . If A =
∑

i αigi then by assumption gi 6∈ M+
m and Sgi 6∈ M+

m for all
i. Put B =

∑

j βjhj and let ξ = (1 + S)A + (1 + U + U 2)B be as in (18).

Consider the subgraph Hξ of G with all vertices gi, Sgi and hj , Uhj , U
2hj

and edges {gi, Sgi}, {hj , Uhj}, {Uhj , U
2hj} and {U 2hj , hj}, i.e., S-segments

of gi and U -triangles of hj for all i and j. This subgraph is finite since it is
induced by the finite formal sum ξ in (18). The assumption on A implies in
particular that each vertex of an S-segment in Hξ is labeled with “−”. The
condition ξ ∈ R+

m in (18) implies for the subgraph Hξ that each vertex f of
Hξ with label “−” must be simultaneously a vertex of an S-segment and an
U -triangle in Hξ. Otherwise we would find that the formal sum ξ contains
the element f ∈ Mm r M+

m contradicting ξ ∈ R+
m.

Assume that Hξ contains an U -triangle. Then item 1 of Lemma 12
implies that this U -triangle has at least one vertex f1 with label “-”. Since
vertices with label “-” of Hξ are also vertices of S-segments in Hξ, the graph
Hξ contains also the vertex Sf1 which by assumption is labeled with “-”.
The graph Hξ contains also the U -triangle of Sf1 since Sf1 is labeled with
“−”. The new triangle has at least a second vertex f2 6= Sf1 which has label
“−”. Otherwise it would contradict item 2 of Lemma 12. Again the vertex
f2 induces an S-segment which, in turn, leads to a U -triangle in Hξ. The
algorithm stops when it hits a U -triangle a second time.

If this algorithm stops then we find a finite cycle on G̃ containing edges
of the forms (fi, Sfi), (Sfi, USfi) and possibly (USfi, U

2Sfi). However
Lemma 14 shows that the only cycles are S-segments or U -triangles. Hence
a finite cycle cannot exist and the algorithm does not stop. Hence we have
shown in the case that Hξ has at least one U -triangle that Hξ is a graph
containing infinitely many U -triangles. This is a contradiction to Hξ being
finite and shows that Hξ is empty.

There remains the case B = 0. If A 6= 0 and B = 0 then Hξ contains
at least one S-segment. The two vertices g and Sg of this S-segment are
labeled by ”-” by assumption. Hence Hξ contains the U -triangles of g and
Sg and this implies that B 6= 0.

The discussion above shows that A = B = 0 and this proves the lemma.
�

Proof of Proposition 10. Let A,B ∈ Rm satisfy (18) and take A = A++A−

as defined in Lemma 13. We then find

(1 + S)A+ (1 + U + U 2)B

= (1 + S)A− + (1 + U + U 2)(B + SA+) + (1 − T − T ′)(A+)

since US = T and U 2S = T ′. Since (1 − T − T ′)A+ is in R+
m Lemma 15

then implies A− = B +A+ = 0. �
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4 Proof of Proposition 4

Let us fix m ∈ N. For the proof of Proposition 4 we need a few lemmas.

Lemma 16 The element T̃+
m defined in (13) belongs to R+

m and satisfies the
relation

(S − 1) T̃+
m ≡ T∞

m (S − 1) (mod (1 − T )Rm)

if and only if

∑

d>b≥0
a>c>0

ad−bc=m

(

a b
c d

)

≡
∑

d>b>0
a>c≥0

ad−bc=m

(

−c −d
a b

)

(mod (1 − T )Rm).(20)

Proof . To show the first part of the lemma we have to show that the set
of integers (a, b, c, d) satisfying a > c ≥ 0, d > b ≥ 0 and ad − bc = m is

finite and the associated formal sum of matrices T̃+
m =

∑

(

a
c

b
d

)

is in R+
m.

Put 0 < x ≤ a such that c = a− x and 0 < y ≤ d such that b = d− y. The
inequalities

m = ad− bc = ad− ab+ bx ≥ a(d− b) > a > 0

and
m = ad− bc = ad− cd+ cy ≥ d(a− c) > d > 0

show the finiteness of the set and hence T̃+
m ∈ R+

m.
All elements in the following computation are in Rm. An explicit calcu-

lation modulo (1 − T )Rm gives

T∞
m (1 − S) ≡ (1 − S)T̃+

m

⇐⇒
∑

d>b≥0
a>0

(

a b
0 d

)

−
∑

d>b≥0
a>0

(

b −a
d 0

)

≡
∑

d>b≥0
a>c≥0

(

a b
c d

)

−
∑

d>b≥0
a>c≥0

(

−c −d
a b

)

⇐⇒ −
∑

d>b≥0
a>0

(

b −a
d 0

)

≡
∑

d>b≥0
a>c>0

(

a b
c d

)

−
∑

d>b≥0
a>c≥0

(

−c −d
a b

)

⇐⇒ −
∑

d>b≥0
a>0

(

b −a
d 0

)

≡
∑

d>b≥0
a>c>0

(

a b
c d

)

−
∑

d>0
a>c≥0

(

−c −d
a 0

)

−
∑

d>b>0
a>c≥0

(

−c −d
a b

)

.(21)
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We also have that
∑

d>0
a>c≥0

(

−c −d
a 0

)

≡
∑

d>0
a>c≥0

(

a− c −d
a 0

)

≡
∑

d>b≥0
a>0

(

b −a
d 0

)

modulo (1 − T )Rm. Inserting this relation into (21) we find T∞
m (1 − S) ≡

(1 − S)T̃+
m (mod (1 − T )Rm) is equivalent to (20). �

Lemma 17 For
∑

a>c≥0
d>b≥0

a+b≥c+d

(

a
c

b
d

)

,
∑

a>c≥0
d>b≥0

a+b≤c+d

(

a
c

b
d

)

∈ R+
m we have

∑

a>c≥0
d>b≥0

a+b≥c+d

(

a
c

b
d

)

T =
∑

α>γ≥0
δ>β≥0

γ+δ≥α+β

T
(

α
β

γ
δ

)

and(22)

∑

a>c≥0
d>b≥0

a+b≤c+d

(

a
c

b
d

)

T ′ =
∑

α>γ≥0
δ>β≥0

γ+δ≤α+β

T ′
(

α
β

γ
δ

)

.(23)

Proof . Let A =
(

a
c

a+b
c+d

)

be one of the matrices in the sum on the left

hand side of (22) and put

α = a− c, β = c, γ = a+ b− c− d and δ = c+ d.

Then A can be written as A =
(

α+β
β

γ+δ
δ

)

. Since α > γ ≥ 0, δ > β ≥ 0 and

γ + δ ≥ α+ β the matrix A is an element of the sum on the right hand side
in (22).

A similar argument shows that any matrix element
(

α+β
β

γ+δ
δ

)

of the

right hand side in (22) is indeed an element of the sum on the left hand side.
Equation (23) follows from (22) by taking the transpose of both sides.

�

Lemma 18 The sum T̃+
m in (13) satisfies the relation

T̃+
m (1 − T − T ′) = (1 − T − T ′)

(

T̃+
m

)tr
.(24)

Proof . In this proof, all matrices except 1, T and T ′ belong to M+
m. We

consider the three terms T̃+
m , T̃+

mT and T̃+
n T

′ on the left hand side of (24).
Write T̃+

m in the following way:

T̃+
m =

∑

a>c≥0
d>b≥0

a>b

(

a
c

b
d

)

+
∑

a>c≥0
d>b≥0

a≤b

(

a
c

b
d

)

=
∑

a>c≥0
d>b≥0

a>b
d>c

(

a
c

b
d

)

+
∑

a>c≥0
d>b≥0

a>b
d≤c

(

a
c

b
d

)

+
∑

a>c≥0
d>b≥0

a≤b
d>c

(

a
c

b
d

)

+
∑

a>c≥0
d>b≥0

a≤b
d≤c

(

a
c

b
d

)

.(25)
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The last sum in (25) is empty since a > c ≥ d > b ≥ a. We will show
that the second and third sums are canceled by elements in T̃+

mT
′ and T̃+

mT .
Write T̃+

mT as

T̃+
mT =

∑

a>c≥0
d>b≥0

a+b≥c+d

(

a
c

a+b
c+d

)

+
∑

a>c≥0
d>b≥0

a+b<c+d

(

a
c

a+b
c+d

)

.(26)

Then the last term is identical to the third sum in (25) as the following
arguments show:

• Let A =
(

a
c

a+b
c+d

)

be one of the matrices in the sum
∑

a>c≥0
d>b≥0

a+b<c+d

(

a
c

a+b
c+d

)

.

Put x = a+ b and y = c+ d. Then A =
(

a
c

x
y

)

and its entries satisfy

a > c ≥ 0, y > x ≥ 0 and x ≥ a

and hence y > x ≥ a > c. Therefore A appears also in the third sum
in (25).

• On the other hand take A =
(

a
c

b
d

)

from the third sum in (25) and

put x = b − a ≥ 0 and y = d − c > 0. Hence A =
(

a
c

a+x
c+y

)

and its

entries satisfy

a > c ≥ 0, a+ x < c+ y and y > a+ x− c > x ≥ 0.

Thus, A appears also in the last term in (26).

Similarly we write

T̃+
mT

′ =
∑

a>c≥0
d>b≥0

a+b≤c+d

(

a+b
c+d

b
d

)

+
∑

a>c≥0
d>b≥0

a+b>c+d

(

a+b
c+d

b
d

)

and see that the last term is equal to the second sum in (25).
Hence we can write

T̃+
m (1 − T − T ′)

=
∑

a>c≥0
d>b≥0

min{a,d}>max{b,c}

(

a
c

b
d

)

−
∑

a>c≥0
d>b≥0

a+b≥c+d

(

a
c

a+b
c+d

)

−
∑

a>c≥0
d>b≥0

a+b≤c+d

(

a+b
c+d

b
d

)

.(27)

Using (22), (23) and
∑

a>c≥0
d>b≥0

min{a,d}>max{b,c}

(

a
c

b
d

)

=
∑

α>γ≥0
δ>γ≥0

min{α,δ}>max{β,γ}

(

α
β

γ
δ

)

, we

find that the right hand side of (27) is invariant under transposition. We
have

T̃+
m (1 − T − T ′) =

(

T̃+
m (1 − T − T ′)

)tr
= (1 − T − T ′)

(

T̃+
m

)tr
.
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�

Lemma 16 allows us to prove the first part of Proposition 4 simply by
comparing the two formal sums in (20).

Proof of Proposition 4. For m ∈ N denote by A the finite formal sum on
the left hand side in (20) and by B the one on the right hand side. Denote
by [ · ] the usual Gauss bracket. The maps

ν : g =

(

a b
c d

)

7→ T [−a
c ]g =

(

a+ [−a/c]c b+ [−a/c]d
c d

)

(28)

where a > c > 0 and

µ : h =

(

−c −d
a b

)

7→T−[− d
b ]h =

(

−c−[−d/b]a −d−[−d/b]b
a b

)

(29)

where d > b > 0 give inverse bijections between the sets

An =

{(

a b
c d

)∣

∣

∣

∣

a > c > 0, d > b ≥ 0, n = ad− bc

}

and

Bn =

{(

−c −d
a b

)∣

∣

∣

∣

a > c ≥ 0, d > b > 0, n = ad− bc

}

.

Extending the maps to A,B ∈ Rm shows Equation (20).
The remaining property of T̃+

m in (14) follows from Lemma 18. �

Remarks:

• The maps ν and µ in (28) and (29) are closely related to the operators
K and K−1 in [3]. We have indeed K(A) = µ(SA) and K−1(A) =
ν(S−1A), according to Proposition 6.1 in [3].

• In [2] L. Merel gives a different derivation of T̃+
m based on modular

symbols.

5 Proof of Theorem 2

Proof of Theorem 2. For m ∈ N suppose T̃m ∈ R+
m satisfies the compat-

ibility criterion (10). Theorem 1 implies that T̃m is unique modulo JRm.
Applying Corollary 11, we find that T̃m is unique modulo (1 − T − T ′)R+

m.
Consider then T̃+

m as defined in (13). Using Proposition 4, we find that

T̃m(1 − T − T ′) ≡ T̃+
m(1 − T − T ′) = (1 − T − T ′)

(

T̃+
m

)tr

where the equivalence is modulo (1 − T − T ′)R+
m. Hence,

T̃m(1 − T − T ′) ∈ (1 − T − T ′)R+
m.
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According to Theorem 1 T̃n, T̃m ∈ R+
∗ satisfy the product formula

T̃n T̃m =
∑

d|(n,m)

d−1
(

d
0

0
d

)

T̃mn

d2
modulo JR+

nm)

and hence modulo (1 − T − T ′)R+
nm �

6 Proof of Theorem 8

We fix s ∈ C with Re(s) > 0 and m ∈ N. Let u ∈ S(s) be a Maass cusp
form and ψ ∈ FE∗

s its period function. Before showing that ψ|2sT̃
+
m is the

period function of u|0T∞
m we discuss the action of the mth Hecke operator

on the periodic function f and the Fourier coefficients of u.

Lemma 19 For u ∈ S(s) a Maass cusp form and f : CrR → C its periodic
function the function f |2sT

∞
m is the periodic function of the Maass cusp form

u|0T∞
m .

Proof . Let u ∈ S(s) be a Maass cusp form with Fourier expansion (15).
Its periodic function f : C r R → C has the expansion (16):

f(z) = ±
∑

n∈±N

|n|s− 1
2 an e

2πinz for Im(z) ≷ 0.

For m ∈ N the function u|0T∞
m is in S(s). Since

d−1
∑

b=0

e
2πinb

d =

{

0 for d 6 |n and
d for d |n

for all n ∈ Z and d ∈ N we find that

u|0T∞
m (z) =

∑

ad=m
0≤b<d

√

ay

d

∑

n∈Z 6=0

anKs− 1
2

(

2π|n|ay
d

)

e
2πin(ax+b)

d

=
∑

ad=m

√
my

∑

n∈Z 6=0

adnKs− 1
2
(2π|n|ay) e2πinax

=
√
m

∑

d|m

∑

n∈m
d

Z 6=0

a d2n
m

Ks− 1
2
(2π|n|y) e2πinx

=
√
my

∑

n∈Z 6=0





∑

a|gcd(m,|n|)

amn

a2



Ks− 1
2
(2π|n|y) e2πinx.
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Let F : C r R → C denote the periodic function of the Maass cusp form
u|0T∞

m ∈ S(s). Then we find

F (z) = ±
√
m

∑

n∈±N





∑

a|gcd(m,|n|)

amn

a2



 |n|s− 1
2 e2πinz

= ±
√
m

∑

d|m

∑

n∈±N

adn

∣

∣

∣

nm

d

∣

∣

∣

s− 1
2
e

2πinmz
d

= ±
√
m

∑

ad=m

∑

n∈±N

d|n

an

∣

∣

∣

nm

d2

∣

∣

∣

s− 1
2
e

2πinaz
d

= ±ms
∑

ad=m

d−2s
d−1
∑

b=0

∑

n∈±N

an |n|s−
1
2 e2πin az+b

d

= f |2sT
∞
m (z) for Im(z) ≷ 0.

Reversing the steps in the above calculation we get the inverse direction
of the lemma. �

Lemma 20 For m ∈ N and
(

a
c

b
d

)

∈ M+
m we have

f |2sS|2s

(

a
c

b
d

)

(z) = f |2sS
(

a
c

b
d

)

(z) for z ∈ C r R.(30)

Proof . We easily check that Equation (30) holds if

(cz + d)−2s

(

az + b

cz + d

)−2s

= (az + b)−2s for z ∈ C r R

or, equivalently, if

arg(cz + d) + arg

(

az + b

cz + d

)

= arg(az + b) for z ∈ C r R.(31)

For c = 0 the relation (31) is true since then d > 0. In general the rela-
tion (31) only holds modulo 2π. Hence we must show that the left hand side
of (31) is in the interval (0, π) for Im(z) > 0 and in (−π, 0) for Im(z) < 0.

Take c > 0. Since az+b
cz+d

= a
c
− m

c(cz+d) we find that for Im(z) > 0

0 < arg

(

az + b

cz + d

)

= arg

(

a

m
− 1

cz + d

)

< arg

(

− 1

cz + d

)

= − arg(cz + d) + π,
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respectively for Im(z) < 0

0 > arg

(

az + b

cz + d

)

= arg

(

a

m
− 1

cz + d

)

> arg

(

− 1

cz + d

)

= − arg(cz + d) − π.

�

Proof of Theorem 8. Let u ∈ S(s) be a Maass cusp form with Fourier
expansion (15) and let ψ ∈ FE∗

s be its period function. For fixed m ∈ N we
have

c(s)ψ|2sT̃
+
m = f |2s(1 − S)|2sT̃

+
m

= f |2s(1 − S) T̃+
m = f |2sT

∞
m (1 − S)

since T̃+
m satisfies the compatibility criterion (10). The crucial step in the

calculation above is the equality

f |2s(1 − S)|2sT̃
+
m(z) = f |2s(1 − S) T̃+

m(z)

for all z ∈ C r R which however follows from Lemma 20. Lemma 19 then
implies that f |2sT

∞
m is the periodic function of u0|0T∞

n . �

Theorem 8 shows explicitly that the Hecke operators on Maass cusp
forms induce indeed the Hecke operators on period functions.
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