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Abstract. In this paper we extend the transfer operator approach to Selberg’s

zeta function for cofinite Fuchsian groups to the Hecke triangle groups Gq , q =

3, 4, . . ., which are non-arithmetic for q 6= 3, 4, 6. For this we make use of a
Poincaré map for the geodesic flow on the corresponding Hecke surfaces which

has been constructed in [13] and which is closely related to the natural extension
of the generating map for the so called Hurwitz-Nakada continued fractions.

We derive simple functional equations for the eigenfunctions of the transfer

operator which for eigenvalues ρ = 1 are expected to be closely related to the
period functions of Lewis and Zagier for these Hecke triangle groups.

1. Introduction. This paper continues our study of the transfer operator for cofi-
nite Fuchsian groups and their Selberg zeta functions [3],[4]. For the modular
groups, i.e. finite index subgroups Γ ⊂ SL(2,Z), the transfer operator approach
to Selberg’s zeta function [3] has led to interesting new developments in number
theory, like the theory of period functions for Maass wave forms by Lewis and Za-
gier [9]. Obviously, it is necessary to extend this theory to more general Fuchsian
groups, especially the nonarithmetic ones. One possibility for such a generaliza-
tion is via a cohomological approach [1], which has been worked out for the case
G3 = SL(2,Z) recently in [2]. We concentrate on the transfer operator approach
to this circle of problems and started to work out this approach in [12],[13] for the
Hecke triangle groups which, contrary to modular groups studied up to now, are
mostly non-arithmetic.

The transfer operator has been introduced by D. Ruelle [18] among other reasons
primarily to investigate analytic properties of dynamical zeta functions. A typical
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example of such a function is the Selberg zeta function, ZS(s), for the geodesic flow
on surfaces of constant negative curvature, which connects the length spectrum of
this flow with spectral properties of the corresponding Laplacian. It is defined by

ZS(s) =
∏
γ

∞∏
k=0

(
1− e−(s+k)l(γ)

)
, (1)

where the outer product is taken over all prime periodic orbits γ of period l(γ) of
the geodesic flow Φt : SM → SM on the unit tangent bundle of the surface M.
The period l(γ) coincides in this case with the length of the corresponding closed
geodesic. If P : Σ → Σ is the Poincaré map on a section Σ of the flow Φt Ruelle
showed that ZS(s) can be rewritten as

ZS(s) =
∞∏
k=0

1
ζR(s+ k)

,

where ζR denotes the Ruelle zeta function for the Poincaré map P defined as

ζR(s) = exp

( ∞∑
n=1

1
n
Zn(s)

)
with

Zn(s) =
∑

x∈FixPn
exp

(
−s

n−1∑
k=0

r
(
Pk(x)

))
, n ≥ 1,

the so called dynamical partition functions and r : Σ → R+ the recurrence time
function with respect to the map P, defined through

Φr(x)(x) ∈ Σ for x ∈ Σ and Φt(x) /∈ Σ for 0 < t < r(x).

In the transfer operator approach for the modular groups the Selberg zeta func-
tion gets expressed in terms of the Fredholm determinant of an operator Ls as
ZS(s) = det(1 − Ls). From this relation it is clear that the zeros of ZS(s) are di-
rectly related to the values of s for which Ls has eigenvalue one. Furthermore, the
corresponding eigenfunctions in a certain Banach space of holomorphic functions
can be directly related to the automorphic functions of these modular groups [4].
It is expected that this approach can be extended to all cofinite Fuchsian groups.
In this paper we continue to work it out for the Hecke triangle groups and their
corresponding surfaces. A Poincaré map P : Σ → Σ for the geodesic flow on the
Hecke surfaces Mq = Gq\H, q = 3, 4, 5, . . . was constructed in [13]. Thereby H
denotes the hyperbolic upper half-plane and Gq the Hecke triangle group generated
by the isometries

S : z 7→ −1/z and T : z 7→ z + λq

with λq = 2 cos
(
π
q

)
. In [13] it was shown, that the map P is closely related to the

natural extension Fq : Ωq → Ωq of the generating map fq : Iq → Iq, Iq = [−λq2 ,
λq
2 ]

of the Hurwitz-Nakada continued fractions [14],[17], also called λq-continued frac-
tions or shortly λq-CF ’s. These are closely related to the Rosen λ-continued frac-
tions [16, 17, 19]. For a precise description of this relationship see e.g. [13] Remark
15. We recall the necessary facts about the λq-continued fractions in §2. Con-
trary to the case of the modular surfaces, where a Poincaré map P : Σ → Σ has
been constructed through the natural extension of the Gauss map TG : [0, 1] →
[0, 1], Tg(x) = 1

x mod 1, x 6= 0, in the present case of the Hecke surfacesMq there
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is not a one-to-one correspondence between the periodic orbits of the map fq gen-
erating the λq-CF ’s and the periodic orbits of the geodesic flow Φt : SMq → SMq.
Indeed there exist for every Gq exactly two periodic points rq, −rq ∈ Iq which cor-
respond to the same periodic orbit O of the flow Φt. In the case q = 3 Hurwitz
already showed in [8] that there exist exactly two closed f3-orbits which are equiva-
lent under the action of the group G3 = SL(2,Z) and hence lead to the same orbit
of the flow Φt. As a consequence the Fredholm determinant det(1−Ls) of the Ruelle
transfer operator Ls of the the Hurwitz-Nakada map fq does not correctly describe
the Selberg zeta function (1) for the Hecke triangle groups Gq, since it contains the
contribution of the closed orbit O twice. To correct this overcounting we introduce
another transfer operator, Ks, whose Fredholm determinant describes exactly the
contribution of this orbit O to the Selberg function. The form of this operator can
be directly deduced from the λq-CF expansion of the point rq ∈ Iq. The spectrum
of the operator Ks can be determined explicitly, leading to regularly spaced zeros
of its Fredholm determinant, det(1 − Ks), in the complex s-plane. In in Section
6.2 we will use the operator Ks to show the following formula for the Selberg zeta
function for Hecke triangle groups:

ZS(s) =
det(1− Ls)
det(1−Ks)

. (2)

As in the case of the modular surfaces and the Gauss map TG, the holomorphic
eigenfunctions −→g of the transfer operator Ls fulfil simple functional equations. In
the case q = 3 it was recently shown [2] that if <s = 1

2 then there is a one-to-one
correspondence between eigenfunctions of Ls with eigenvalue 1 and Maass wave-
forms, i.e. square-integrable eigenfunctions of the Laplace-Beltrami operator, on
the modular surfaceM3. We therefore expect that the holomorphic eigenfunctions
−→g of the operator Ls with eigenvalue ρ(s) = 1 can be related for all Gq and general
s to the automorphic functions of these Hecke triangle groups which almost all are
non arithmetic. This will extend the transfer operator approach to the theory of
period functions of Lewis and Zagier [9] to a whole class of non-arithmetic Fuchsian
groups. We hope to come back to this question soon.

The structure of this article is as follows: In Section 2 we briefly introduce
the Hecke triangle groups Gq and recall the λq-continued fractions as discussed
in [12]. Section 3 recalls the geodesic flow on the Hecke surface Mq, the Selberg
zeta function and the construction of the Poincaré section Σ and the Poincaré map
P : Σ → Σ in [13]. The transfer operator Ls for the H-N map fq : Iq → Iq is
discussed in Section 4. We show that it is a nuclear operator when acting in a
certain Banach space B of vector-valued holomorphic functions whose dimension
is determined by the Markov partitions for fq and has a meromorphic extension
to the entire complex s-plane. In Section 5 we define a symmetry operator, P :
B → B, commuting with the transfer operator. This allows us to restrict the
operator Ls to the two eigenspaces Bε, ε = ±1 of P . From this we derive the scalar
functional equations which the eigenfunctions of the restricted transfer operators
Ls,ε are shown to fulfil. In Section 6 we discuss the Ruelle zeta function for the
H-N map fq and show that it can be expressed in terms of Fredholm determinants
of the operator Ls respectively the reduced operators Ls,ε. Finally, in section 6.2
we introduce the transfer operator, Ks, whose Fredholm determinant describes the
contribution of the orbit, O+ corresponding to the point rq and which is needed to
obtain (2) above.
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2. λq-continued fractions and their generating maps.

2.1. The Hecke triangle groups. Let

PSL(2,R) = SL(2,R) mod {±1}

denote the projective linear group, where SL(2,R) denotes the group of 2×2 matrices

with real entries and determinant 1 and ±1 =
(
±1 0
0 ±1

)
. We usually identify the

elements of PSL(2,R) with one of its matrix representatives in SL(2,R).
For an integer q ≥ 3, the Hecke triangle group Gq ⊂ PSL(2,R) is the group

generated by the elements

S =
(

0 −1
1 0

)
and Tq =

(
1 λq
0 1

)
, (3)

where

λq = 2 cos
(
π

q

)
∈ [1, 2).

The elements S and Tq satisfy the relations

S2 = (STq)q = 1.

Later on we also need the element

T ′q =
[

1 0
λq 1

]
= ST−1

q S ∈ Gq.

The action of PSL(2,R) on H is given by Möbius transformations:

g z :=
az + b

cz + d
for g =

(
a b
c d

)
∈ PSL(2,R).

One can easily verify that g z ∈ H for z ∈ H and g x ∈ PR for x ∈ PR where
H = {x + iy | y > 0} denotes the upper half-plane and PR = R ∪ {∞} denotes its
boundary, the projective real line.

We say that two points x, y ∈ H ∪ PR are Gq-equivalent if there exists a g ∈ Gq
such that x = g y.

An element g ∈ PSL(2,R) is called elliptic, hyperbolic or parabolic depending on
whether |Tr (g)| := |a+ d| < 2, > 2 or = 2. The same notation applies for the fixed
points of the corresponding Möbius transformation.

In the following we identify the element g ∈ PSL(2,R) with the induced map
z 7→ g z on H. Note that the type of fixed point is preserved under conjugation,
g 7→ AgA−1, by A ∈ PSL(2,R). A parabolic fixed point is a degenerate fixed point,
belongs to PR, and is usually called a cusp. Elliptic fixed points appear in pairs, z
and z with z ∈ H, and Gq(z), the stabilizer subgroup of z in Gq, is cyclic of finite
order. Hyperbolic fixed points also appear in pairs x, x? ∈ PR, where x? is said to
be the repelling conjugate point of the attractive fixed point x.

2.2. λq-continued fractions and their duals. Consider finite or infinite se-
quences [ai]i with ai ∈ Z for all i. We denote a periodic subsequence within an
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infinite sequence by overlining the periodic part and a finitely often repeated pat-
tern is denoted by a power, where the power 0 means absence of the pattern, hence

[a1, a2, a3] = [a1, a2, a3, a2, a3, a2, a3, . . .],

[a1, (a2, a3)i, a4, . . .] = [a1, a2, a3, a2, a3, . . . , a2, a3︸ ︷︷ ︸
i times a2,a3

, a4, . . .] and

[a1, (a2)0, a3, . . .] = [a1, a3, . . .].

Furthermore, by the negative of a sequence we mean the following:

−[a1, a2, . . .] = [−a1,−a2, . . .].

Put

hq :=

{
q−2

2 for even q and
q−3

2 for odd q.

Next we define the set Bq of forbidden blocks as

Bq :=


{[±1]} ∪

⋃∞
m=1{[±2,±m]} for q = 3,

{[(±1)hq+1]} ∪
⋃∞
m=1{[(±1)hq ,±m]} for even q and

{[(±1)hq+1]}
∪
⋃∞
m=1{[(±1)hq ,±2, (±1)hq ,±m]} for odd q ≥ 5.

The choice of the sign is the same within each block and m ≥ 1. For example [2, 3],
[−2,−3] ∈ B and [2,−3] 6∈ B for q = 3.

We call a sequence [a1, a2, a3, . . .] q-regular if [ak, ak+1, . . . , al] 6∈ Bq for all 1 ≤
k < l and dual q-regular if [al, al−1, . . . , ak] 6∈ Bq for all 1 ≤ k < l. Denote by
Areg
q respectively by Adreg

q the set of infinite q-regular respectively dual q-regular
sequences (ai)i∈N.

A nearest λq-multiple continued fraction, or λq-CF, is a formal expansion

[a0; a1, a2, a3, . . .] := a0λq +
−1

a1λq + −1
a2λq+

−1
a3λq+...

with ai ∈ Z6=0, i ≥ 1 and a0 ∈ Z.
A λq-CF[a0; a1, a2, a3, . . .] is said to converge if either [a0; a1, a2, a3, . . . , al] has

finite length or liml→∞[a0; a1, a2, a3, . . . , al] exists in R. The notations for sequences,
as introduced above, are also used for λq-CF’s.

We say that a λq-CF is regular respectively dual regular if the sequence
[a1, a2, a3, . . .] is q-regular respectively dual q-regular. Regular and dual regular
λq-CF ’s are denoted by [[a0; a1, . . .]] respectively [[a0; a1, . . .]]?.

It follows from [13] Lemmas 16 and 34 that regular and dual regular λq-CF ’s con-
verge. Moreover, it is known [13] that x has a regular expansion x = [[0; a1, a2, . . .]]
with leading a0 = 0 if and only if x ∈ Iq :=

[
−λq2 ,

λq
2

]
.

Convergent λq-CF ’s can be rewritten in terms of the generators of the Hecke
triangle group Gq: if the expansion (2.2) is finite it can be written as follows

[a0; a1, a2, a3, . . . , al] = a0λq +
−1

a1λq + −1
a2λq+

−1

a3λq+...
−1
alλq

= T a0 ST a1 ST a2 ST a3 · · · ST al 0,
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since −1
aλq+x

= ST a x. For infinite converging λq-CF ’s the expansion has to be
interpreted as

[a0; a1, a2, a3, . . .] = lim
l→∞

[a0; a1, a2, a3, . . . , al]

= lim
l→∞

T a0 ST a1 ST a2 ST a3 · · · ST al 0

= T a0 ST a1 ST a2 ST a3 · · · 0.

An immediate consequence of this is [12, Lemma 2.2.2]:

Lemma 2.1. For a finite regular λq-CF one finds for q = 2hq + 2

[[a0; a1, . . . , an, (1)hq ]] = [[a0; a1, . . . , an − 1, (−1)hq ]]

respectively for q = 2hq + 3

[[a0; . . . , an, (1)hq , 2, (1)hq ]] = [[a0; . . . , an − 1, (−1)hq ,−2, (−1)hq ]].

2.3. Special values and their expansions. The following results are well-known
(see [13] and [12, §2.3]). The point x = ∓λ2 has the regular λq-CF

∓λ
2

=

{
[[0; (±1)hq ]] for even q and
[[0; (±1)hq ,±2, (±1)hq ]] for odd q.

Define

Rq := λq + rq with (4)

rq :=


[[0; 3]] for q = 3,
[[0; (1)hq−1, 2]] for even q and
[[0; (1)hq , 2, (1)hq−1, 2]] for odd q ≥ 5,

(5)

whose expansion hence is periodic with period κq, where

κq :=

{
hq = q−2

2 for even q and
2hq + 1 = q − 2 for odd q.

The regular respectively dual regular λ-CF of the point x = Rq has the form

Rq =


[[1; (1)hq−1, 2]] for even q,

[[1; (1)hq , 2, (1)hq−1, 2]] for odd q ≥ 5, and
[[1; 3]] for q = 3.

=


[[0; (−1)hq ,−2, (−1)hq−1]]? for even q,

[[0; (−1)hq ,−2, (−1)hq ,−2, (−1)hq−1]]? for odd q ≥ 5, and
[[0;−2,−3]]? for q = 3.

Moreover,

Rq = 1 and −Rq = S Rq for even q and

R2
q + (2− λ)Rq = 1 and −Rq =

(
TqS

)hq+1
Rq for odd q,

and Rq satisfies the inequality
λ

2
< Rq ≤ 1.
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2.4. A lexicographic order. Let x, y ∈ IRq := [−Rq, Rq] have the regular λq-CF’s
x = [[a0; a1, . . .]] and y = [[b0; b1, . . .]]. Denote by l(x) ≤ ∞ respectively l(y) ≤ ∞ the
number of entries in the above λq-CF’s. We introduce a lexicographic order “≺” for
λq-CF’s as follows: If ai = bi for all 0 ≤ i ≤ n and l(x), l(y) ≥ n, we define

x ≺ y :⇐⇒



a0 < b0 if n = 0,
an > 0 > bn if n > 0, both l(x), l(y) ≥ n+ 1 and anbn < 0,
an < bn if n > 0, both l(x), l(y) ≥ n+ 1 and anbn > 0,
bn < 0 if n > 0 and l(x) = n or
an > 0 if n > 0 and l(y) = n.

We also write x � y for x ≺ y or x = y.
This is indeed an order on regular λq-CF’s, since Lemmas 22 and 23 in [13] imply:

Lemma 2.2. Let x and y have regular λq-CF’s. Then x ≺ y ⇐⇒ x < y.

2.5. The generating interval maps fq and f?q . Denote by Iq and IRq the inter-
vals

Iq =
[
−λq

2
,
λq
2

]
and IRq = [−Rq, Rq]

with λq and Rq given in (2.3) and (5). The nearest λq-multiple map 〈·〉q is defined
as

〈·〉q : R→ Z; x 7→ 〈x〉q :=
⌊
x

λq
+

1
2

⌋
where b·c is the floor function

bxc = n ⇐⇒

{
n < x ≤ n+ 1 if x > 0 and
n ≤ x < n+ 1 if x ≤ 0.

We also need the map 〈·〉?q given by

〈·〉?q : R→ Z; x 7→ 〈x〉?q :=


⌊
x
λq

+ 1− Rq
λq

⌋
if x ≥ 0 and⌊

x
λq

+ Rq
λq

⌋
if x < 0.

The interval maps fq : Iq → Iq and f?q : Rq → Rq are then defined as follows:

fq(x) =

{
− 1
x −

〈−1
x

〉
q
λq if x ∈ Iq\{0},

0 if x = 0
(6)

respectively

f?q (y) =

− 1
y −

〈
−1
y

〉?
q
λq if y ∈ IRq\{0},

0 if y = 0.
(7)

These maps generate the regular respectively dual regular λq-CF’s in the follow-
ing sense:

For given x, y ∈ R the entries ai and bi, i ∈ Z≥0, in their λq-CF are determined
by the algorithms:

(0) a0 = 〈x〉q and x1 := x− a0λq ∈ Iq,
(1) a1 =

〈
−1
x1

〉
q

and x2 := −1
x1
− a1λq = fq(x1) ∈ Iq,
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( i ) ai =
〈
−1
xi

〉
q

and xi+1 := −1
xi
− aiλq = fq(xi) ∈ Iq , i = 2, 3, . . . ,

(?) the algorithm terminates if xi+1 = 0,
respectively

(0) b0 = 〈x〉?q and y1 := y − b0λq ∈ IRq ,

(1) b1 =
〈
−1
y1

〉?
q

and y2 := −1
y1
− b1λq = f?q (y1) ∈ IRq ,

( i ) bi =
〈
−1
yi

〉?
q

and yi+1 := −1
yi
− biλq = f?q (yi) ∈ IRq , i = 2, 3, . . . ,

(?) the algorithm terminates if yi+1 = 0.
In ([12], Lemmas 17 and 33) it is shown that these algorithms lead to regular
respectively dual regular λq-CF’s in the sense of section (2.2):

x = [[a0; a1, a2, . . .]] and y = [[b0; b1, b2, . . .]]?.

2.6. Markov partitions and transition matrices for fq. As shown in [12], both
maps fq and f?q have the Markov property. This means that there exist partitions of
the intervals Iq and IRq into subintervals whose boundary points are mapped by fq
respectively f?q onto boundary points. In particular the following Markov partitions
for fq have been constructed in ([12], 3.3).

Define the orbit O(x) of x under the map fq as

O(x) =
{
x, fq(x), f2

q (x) := fq(fq(x)), f3
q (x), . . .

}
=
{
fnq (x); n = 0, 1, 2, . . .

}
.

The orbit O(−λq2 ) is finite; indeed if #{S} denotes the cardinality of the set S then

#{O(−λq
2

)} = κq + 1.

We denote the elements of O(−λq2 ) for q = 2hq + 2 by

φi = f iq

(
−λq

2

)
= [[0; 1hq−i]], 0 ≤ i ≤ hq = κq,

respectively for q = 2hq + 3 by

φ2i = f iq

(
−λq

2

)
= [[0; 1hq−i, 2, 1hq ]] and

φ2i+1 = fhq+i+1
q

(
−λq

2

)
= [[0; 1hq−i]], 0 ≤ i ≤ hq =

κq − 1
2

.

The φi’s then satisfy the ordering [13]

−λq
2

= φ0 < φ1 < φ2 < . . . < φκq−2 < φκq−1 = − 1
λq

< φκq = 0.

Define next φ−i := −φi, 0 ≤ i ≤ κq. The intervals

Φi :=
[
φi−1, φi

]
and Φ−i :=

[
φ−i, φ−(i−1)

]
, 1 ≤ i ≤ κq

define a Markov partition of the interval Iq for the map fq. This means that⋃
ε=±

κq⋃
i=1

Φεi = Iq and Φ◦εi ∩ Φ◦δj = ∅ for εi 6= δj, ε, δ = ±1,

holds, where S◦ denotes the interior of the set S.



TRANSFER OPERATOR FOR HECKE TRIANGLE GROUPS 9

As in [12] we introduce next a finer partition which is compatible with the inter-
vals of monotonicity for fq.

In the case q = 3 where λ3 = 1 define for m = 2, 3, 4, . . . the intervals Jm as

J2 =
[
−1

2
,−2

5

]
and Jm =

[
− 2

2m− 1
,− 2

2m+ 1

]
, m = 3, 4, . . .

and set J−m := −Jm for m = 2, 3, 4, . . .. This partition of I3, which we denote
by M(f3), is Markovian. The maps f3|Jm are monotone with f3|Jm(x) = − 1

x −m
and locally invertible with (f3|Jm)−1(y) = − 1

y+m for y ∈ f3(Jm), m = 2, 3, . . .. For
q ≥ 4 consider the intervals Jm, m = 1, 2, . . ., with

J1 =
[
−λq

2
,− 2

3λq

]
and

Jm =
[
− 2

(2m− 1)λq
,− 2

(2m+ 1)λq

]
, m = 2, 3, . . .

and set J−m := −Jm for m ∈ N. The intervals Jm are intervals of monotonicity
for fq, i.e the maps fq|Jm are monotone increasing with fq|Jm(x) = − 1

x −mλq and
(fq|Jm)−1(y) = − 1

y+mλq
for m = ±1,±2,±3, . . .. Since some points in O(−λq2 ) do

not fall onto a boundary point of any of the intervals Jm, m ∈ N the partition given
by the intervals Jm has to be refined.

For even q define the intervals J±1i as

Jε1i := Jε1 ∩ Φεi for ε = ±, 1 ≤ i ≤ κq

and therefore Jε1i = Φεi for 1 ≤ i ≤ κq − 1. This way one arrives at the partition
M(fq), defined as

Iq =
⋃
ε=±

(
κq⋃
i=1

Jε1i ∪
∞⋃
m=2

Jεm

)
,

which is clearly again Markovian.
Consider next the case of odd q ≥ 5. Here one has φεi ∈ Jε1 for 1 ≤ i ≤ κq − 2

and φε(κq−1) ∈ Jε2 for ε = ±. For ε = ± define the intervals

Jε1i := Jε1 ∩ Φεi 1 ≤ i ≤ κq − 1 and hence Jε1i = Φεi, 1 ≤ i ≤ κq − 2and
Jε2,i := Jε2 ∩ Φεi, i = κq − 1, κq.

Then it is easy to see that the partition M(fq) defined by

Iq =
⋃
ε=±

κq−1⋃
i=1

Jε1i ∪
κq⋃

i=κq−1

Jε2i ∪
∞⋃
m=3

Jεm


is again Markovian.

A useful tool for understanding the dynamics of the map fq are the transition
matrices A =

(
Ai,j

)
i,j∈F , where F is the alphabet given by the Markov partition

M(fq):

F =


{±2,±3, . . .} for q = 3,
{±11, . . . ,±1κq−1,±2,±3, . . .} for even q and
{±11, . . . ,±1κq−1,±2κq ,±2κq+1,±3, . . .} for odd q ≥ 5.
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Each entry Ai,j , i, j ∈ F is given by

Ai,j =

{
0 if Jj ∩ fq(Ji) = ∅ or
1 if Jj ⊂ fq(Ji).

Tables 1, 2 and 3 show the transition matrices A for q = 3, even q respectively
odd q ≥ 5, as determined in [12].

A±2,±m = 0, m ≥ 2,
A±2,∓m = 1, m ≥ 2,
A±k,m = 1, k ≥ 3, and all m ∈ F.

Table 1. The matrix elements of the transition matrix A =
(Ai,j)i,j∈F for q = 3.

A±1l,±1l+1 = 1, 1 ≤ l ≤ κq − 1,
A±1κq−1,±m = 1, m = 2, 3, . . . ,

A±1κq ,∓1l = 1, 1 ≤ l ≤ κq,
A±1κq ,−m = 1, m = 2, 3, . . . ,

Am,n = 1, m ∈ Z \ {0,±1}, n ∈ F,

Table 2. The nonvanishing matrix elements of the transition ma-
trix A = (Ai,j)i,j∈F for even q.

2.7. The local inverses of fq. Consider the local inverses ϑ±n : J±n → R in
(2.6) respectively (2.6) of the interval map fq on the monotonicity intervals J±n,
1 ≤ n ≤ ∞, respectively 2 ≤ n ≤ ∞ for q = 3. They are given by

ϑ±n(x) :=
(
fq
∣∣
J±n

)−1

(x) =
−1

x± nλq
= ST±n x.

Lemma 2.3. The maps ϑn, n ∈ Z6=0, respectively n ∈ Z6=0,±1 for q = 3, satisfy:
1. ϑn extends to a holomorphic function C \ {−nλq} → C.
2. ϑn is strictly increasing on (−λq, λq).
3. For x ∈ (−λq, λq) we have ϑn(x) < ϑm(x) for either 0 < n < m or n < m < 0

or m < 0 < n.

Proof. 1. That ϑn extends holomorphically to C \ {−nλq} is obvious.
2. Since ϑ′n(x) = (nλq +x)−2 the derivative ϑ′n restricted to (−λq, λq) is positive

and hence ϑn is strictly increasing on (−λq, λq).
3. Consider the three cases 0 < n < m, n < 0 < m and n < m < 0: since
x ∈ (−λq, λq) we find that

0 < n < m ⇐⇒ 0 < nλq + x < mλq + x

⇐⇒ −1
nλq + x

<
−1

mλq + x

⇐⇒ ϑn(x) < ϑm(x),
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A±12i,±12i+1 = 1 1 ≤ i ≤ hq − 2,
A±12hq−2,±12hq

= 1,

A±12hq−2,±2κq
= 1,

A±12hq ,∓1i = 1 1 ≤ i ≤ κq − 1,

A±12hq ,∓2i = 1 κq ≤ i ≤ κq + 1,

A±12hq ,∓m = 1 m ≥ 3,

A±12i−1,±12i+1 = 1, 1 ≤ i ≤ hq − 1,
A±12hq−1,±2κq+1 = 1,

A±12hq−1,∓m = 1, m ≥ 3,

A±2κq ,∓11 = 1,

A±2κq+1,δ1i = 1, δ = ±, 2 ≤ i ≤ κq − 1,

A±2κq+1,δ2i = 1, δ = ±, 2 ≤ i ≤ κq − 1,

A±2κq+1,δn = 1, δ = ±, n ≥ 3,

A±2κq+1,∓11 = 1,

Am,n = 1, m ∈ Z \ {0,±1,±2}, n ∈ F.

Table 3. The nonvanishing matrix elements of the transition ma-
trix A = (Ai,j)i,j∈F for odd q ≥ 5.

n < m < 0 ⇐⇒ nλq + x < mλq + x < 0

⇐⇒ −1
nλq + x

<
−1

mλq + x

⇐⇒ ϑn(x) < ϑm(x) and

m < 0 < n ⇐⇒ mλq + x < 0 < nλq + x

⇐⇒ −1
mλq + x

>
−1

nλq + x

⇐⇒ ϑm(x) > ϑn(x).

3. The geodesic flow on Hecke surfaces. Let H = {z = x+ iy | y > 0, x ∈ R}
denote the upper half-plane equipped with the hyperbolic metric ds2 = dx2+dy2

y2 .
The boundary of H is ∂H = PR = R ∪ {∞}.

A geodesic γ on H is either a half-circle based on R or a line parallel to the
imaginary axis. The pair of base points of γ are denoted by γ± ∈ PR such that the
geodesic flow Φt : SH → SH along the oriented geodesic γ satisfies limt→±∞ φt =
γ±. We identify an oriented geodesic γ on H with the pair of its base points (γ−, γ+).

3.1. A Poincaré map for Φt : SMq → SMq and its Ruelle zeta function.
The Hecke surfaces Mq, hyperbolic surfaces of constant negative curvature −1, are
given for q = 3, 4, . . . as the quotient

Mq = Gq\H,
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which we sometimes identify with the standard fundamental domain of Gq,

Fq =
{
z ∈ H | |z| ≥ 1, |Re (z)| ≤ 1

2

}
with sides pairwise identified by the generators in (3).

If π : H→Mq denotes the natural projection map z 7→ Gq z, then the geodesic
flow Φt on H projects to the geodesic flow on Mq which we denote by the same
symbol Φt. The geodesic γ? = πγ is a closed geodesic on Mq if and only if γ+

and γ− are hyperbolic fixed points of a hyperbolic element gγ∗ ∈ Gq. In [13] a
Poincaré section Σ and a Poincaré map P : Σ → Σ have been constructed for
the geodesic flow on the Hecke surfaces Mq using λq-CF expansions. For this the
authors construct a map P̃ : Σ̃ → Σ̃ with Σ̃ ⊂ ∂Fq × S1 where ∂Fq denotes the
boundary of the standard fundamental domain (3.1) and S1 denotes the unit circle.
The induced map P : Σ → Σ on the projection Σ := π?1

(
Σ̃
)
⊂ SMq defines a

Poincaré map for the geodesic flow on the Hecke surface Mq.
To be more precise, let γ be a geodesic corresponding to an element z̃ ∈ Σ̃ such

that its base points γ± ∈ R have the regular and dual regular λq-CF expansions

γ− = [[a0; (±1)k−1, ak, ak+1, . . .]] and γ+ = [[0; b1, b2, . . .]]?.

Then P̃(z̃) corresponds to the geodesic g (γ−, γ+) = (g γ−, g γ+) for g ∈ Gq such
that its base points have the regular and dual regular expansions

g γ− = [[ak; ak+1 . . .]] and g γ+ = [[0; (±1)k−1, a0, b1, b2, . . .]]?

corresponding to a k−fold shift of the symbol sequences determined by the entries
in the λq-CF ’s of γ− and γ+. But these shifts also correspond to the action of the
map fkq , that is

S (g γ−) = fkq (S γ−) with S γ− =
−1
γ−
∈ Iq.

From these relations we deduce that the periodic orbits of the map P̃ are determined
by the periodic orbits of the map fq which, in turn, are determined by the points
x ∈ Iq with a periodic regular λq-CFexpansion x = [[0; a1, . . . , an]]. The base points
γ± of the corresponding closed geodesic γ are given by

γ− = [[a1; a2, . . . , an, a1]] and γ+ = [[0; an, . . . , a1]]?.

Hence it follows from [13] that there is a one-to-one relation between the orbits of
the points x ∈ Q with periodic regular λq-CF expansion, i.e. the periodic orbits of
the map fq : Iq → Iq, and the periodic orbits of the map P̃. For the Poincaré map
P : Σ → Σ this relation is also bijective except for the periodic orbits under fq of
the two points ±rq , which correspond to the same periodic orbit of P : Σ→ Σ as
shown in [12, Theorem 2.5.1]. Because of (3.1) the period of a periodic orbit O?
of P is smaller than the one of the corresponding periodic orbit of fq if the λq-CF
expansion of a point x = [[0; a1, . . . , an]] in the periodic orbit of fq contains the block
[(±1)k] for some k > 0.

A prime periodic orbit is a periodic orbit which is not obtained by traversing a
shorter orbit several times. Analogously a periodic point x = [[0; a1, . . . , an]] is said
to be prime if n is the shortest period length of the sequence a1, . . . , an. Consider
now a prime periodic orbit γ? = (γ−, γ+) of the geodesic flow determined by the
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prime periodic point x? = S γ− = [[0; a1, . . . , an]] ∈ Iq. The period l(γ?) of γ? is
given by the well-known formula

l(γ∗) = 2 lnλ

where λ is the larger one among the two real positive eigenvalues of the (appropri-
ately chosen) hyperbolic element g? ∈ Gq whose attracting fixed point is x? ∈ Iq.

But fnq (x∗) = x∗ and hence fnq defines a hyperbolic element g∗ ∈ Gq. A straight-
forward calculation then shows that

l(γ∗) = ln
∣∣∣∣ d
dx
fnq (x∗)

∣∣∣∣ =
n−1∑
l=0

ln
∣∣∣∣ d
dx
fq(f lq(x

∗))
∣∣∣∣

=
n−1∑
l=0

r
(
f lq(x

∗)
)
,

where r(x) = ln f ′q(x). Since P̃k(z̃∗) = z̃∗ for some k ≤ n for z̃∗ ∈ Σ̃ corresponding
to x∗ , the period l(γ∗) can also be written as

l(γ∗) =
k−1∑
l=0

r
(
P̃ l(z̃∗)

)
.

Observe here, that r(z∗) = ln f ′q(x
∗) is exactly the recurrence time function for the

Poincaré map P̃. The Ruelle zeta function ζR(s) for the generating map fq of the
λq-CF expansion is defined as

ζR(s) = exp

( ∞∑
n=1

1
n
Zn(s)

)
with

Zn(s) =
∑

x∈Fix fnq

exp

(
−s

n−1∑
k=0

ln f ′q
(
fkq (x)

))
where we used the positivity of f ′q for real arguments. It is well-known that for <s
large enough ζR(s) is a holomorphic function. A prime periodic orbit

O =
(
x, fq(x), . . . , fn−1

q (x)
)

of period n contributes to all partition functions Zln(s), l ∈ N.
If ZO(s) =

∑∞
l=1

1
l exp(−slrO) denotes the contribution of a prime orbit O to

the Ruelle zeta function then one finds by using the Taylor expansion for ln(1− x)

ζR(s) = exp

(∑
O
ZO(s)

)
= exp

(
−
∑
O

ln
(
1− e−s rO

))
.

where rO = ln
(
fnq
)′ (x) depends only on the orbit O and not on the specific

point x ∈ O. Summing over all the prime orbits O of fq leads to the well-known
formula [18]

ζR(s) =
∏
O

(
1− e−srO

)−1
.

Consider on the other hand the Ruelle zeta function for the map P̃ : Σ̃→ Σ̃. We
know that the prime periodic orbits Õ of this map are in a 1 − 1 correspondence
with those of the map fq : Iq → Iq. Let x = [[0; a1, . . . , an]] determine such a
periodic orbit O. Then the corresponding periodic orbit Õ of P̃ is determined by
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the point z̃O ∈ Σ̃ where z̃O is the intersection of Σ̃ with the geodesic γ with base
points (S x,−y), y = [[0; an, . . . , a1]]?, such that P̃k(z̃O) = z̃O for some 1 ≤ k ≤ n.
Observe that

rÕ =
k−1∑
m=0

r
(
P̃m(z̃O)

)
=

n−1∑
m=0

ln f ′q
(
fmq (x)

)
= rO.

Hence the contribution ZÕ(s) of the orbit Õ to the Ruelle zeta function ζR(s) of
the map P̃ coincides with the contribution ZO(s) of the orbit O to ζR(s) of the map
fq. Therefore the Ruelle zeta functions for the two maps are identical.

In [13] it was shown that there is a 1−1 correspondence between the prime peri-
odic orbits Õ of the map P̃ : Σ̃→ Σ̃ and the prime periodic orbits γ of the geodesic
flow on SMq up to the two orbits Õ± determined by the endpoints

(
S (±rq),∓rq

)
.

These two orbits coincide under the projection π?q : SH → SMq. However, the
contributions of both of these two orbits are contained in the Ruelle zeta function
ζR for the map P̃ respectively fq. The period of the orbit O+ of the point rq under
the map fq is given by κq defined in (2.3). Define therefore the partition function
Z
O+
n (s), n ∈ N as follows:

ZO+
n (s) = 0 for all n with κq - n and

ZO+
n (s) = κq exp

(
−sl ln

(
fκqq
)′ (rq)) n = κql, l = 1, 2, . . . .

Then one gets

exp

(
−
∞∑
n=1

1
n
ZO+
n (s)

)
= exp

(
−
∞∑
l=1

1
l
e−sl rO+

)
= 1− e−s rO+ .

Hence the Ruelle zeta function ζPR (s) for the Poincaré map P : Σ → Σ of the
geodesic flow Φt : SMq → SMq has the form

ζPR (s) =
∏
O6=O+

(
1− e−s rO

)−1
.

3.2. The Selberg zeta function. The Selberg zeta function ZS(s) = Z
Gq
S (s) for

the Hecke triangle group Gq is defined as

ZS(s) =
∞∏
k=0

∏
γ? prime

(
1− e−(s+k)l(γ?)

)
.

The inner product is taken over all prime periodic orbits γ? of the geodesic flow on
Mq and l(γ?) denotes the period of γ? (and hence the length of the corresponding
closed geodesic). It is now clear that we can write ZS(s) as

ZS(s) =
∞∏
k=0

∏
Õ6=Õ+

(
1− e−(s+k)rO

)
,

where the inner product is over all prime periodic orbits Õ 6= Õ+ of the Poincaré
map P̃ : Σ̃→ Σ̃. For <s > 1 it can also be written in the form

ZS(s) =
∏∞
k=0

∏
O
(
1− e−(s+k)rO

)∏∞
k=0

(
1− e−(s+k)rO+

) ,
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where the product
∏
O is over all prime periodic orbits O of the map fq. If the

period of O is #O = l then rO = ln
(
f lq
)′ (x) for x ∈ O. Hence rO+ = ln

(
f
κq
q

)′ (rq).
Note that the zeros of the denominator all lie in the left half s-plane. We will show
next how this function can be expressed in terms of the Fredholm determinant of
the transfer operator for the map fq : Iq → Iq.

4. Ruelle’s transfer operator for the Hurwitz-Nakada map fq : Iq → Iq.
For g : Iq → C a function on the interval Iq Ruelle’s transfer operator Ls for fq acts
on it as follows:

Lsg(x) =
∑

y∈f−1
q (x)

e−s r(y) g(y)

where r(y) = ln f ′q(y) and and Re (s) > 1 to ensure convergence of the series. To
get a more explicit form for Ls one has to determine the preimages y of any point
x ∈ Iq. For this recall the Markov partition Iq =

⋃
i∈Aκq

Φi, Aκq = {±1, . . . ,±κq}
in (2.6), determined by the intervals Φi defined in (2.6) and the local inverses ϑn of
fq in (2.7). The Markov property of the map fq shows that the preimages of points
in Φoi can be characterized by the following lemma

Lemma 4.1. For x ∈ Φoi ⊂ Iq for some i ∈ Aκq the preimage f−1
q (x) is given

by the set f−1
q (x) = {y ∈ Iq : y = ϑn(x), n ∈ Ni}, where Ni =

⋃
j∈Aκq

Ni,j with
Ni,j = {n ∈ Z : ϑn(Φi) ⊂ Φj}

Proof. The preimages of a point x in the open interval Φi can be determined
by looking at its λq-CF expansion x = [[0; a1, a2, . . .]]. The boundary points of
the interval Φi are members of the orbit O(−λq2 ) such that for q = 2hq + 2
one finds that Φi = [[[0; 1hq+1−i]], [[0; 1hq−i]]], 1 ≤ i ≤ hq, respectively for q =
2hq + 3 one finds that Φ2i+1 = [[[0; 1hq−i, 2, 1hq ]], [[0; 1hq−i]]], 1 ≤ i ≤ hq, and
Φ2i = [[[0; 1hq+1−i]], [[0; 1hq−i, 2, 1hq ]]], 1 ≤ i ≤ hq. For the intervals Φ−i one
gets analogous expressions with negative entries in the λq-CF expansions. If for
q = 2hq + 2 one has x ∈ Φoi then its λq-CF expansion must be either of the form
x = [[0; 1hq+1−i,−m, . . .]] for some m ≥ 1 or of the form x = [[0; 1hq−i,m, . . .]] for
some m ≥ 2. It is easy to see that the set of n ∈ Z such that ϑn(x) = [[0;n, x]] ∈ Iq
does not depend on x but only on the interval Φi. Thereby [[0;n, x]] denotes the
concatenation of the corresponding sequences. If furthermore ϑn(x) ∈ Φj for x ∈ Φi
then ϑn(Φi) ∈ Φj and hence Ni =

⋃
j∈Aκq

Ni,j . The same reasoning applies to the
case q = 2hq + 3.

Remark 1. We will define the operator Ls on a space of piecewise continuous
functions, hence it is enough to determine the preimages of points in the interior
of the intervals Φi. In general, points on the boundary of an interval Φi can have
more preimages than those in the interior.

We are now able to determine the sets Ni,j explicitly. For this we denote by Z≥n
respectively by Z≤−n for n = 1, 2, . . . the sets Z≥n := {l ∈ N : l ≥ n} respectively
Z≤−n := {l ∈ Z : l ≤ −n}.
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Lemma 4.2. For q = 2hq + 2 the sets Ni,j are given as follows:

N1,hq = Z≥2, N1,−hq = Z≤−1

Ni,i−1 = {1}, Ni,hq = Z≥2, Ni,−hq = Z≤−1, 2 ≤ i ≤ hq,
Ni,j = ∅ for all other 1 ≤ i ≤ hq, and all j ∈ Aκq
N−i,j = −Ni,−j for all i, j ∈ Aκq .

For q = 3 the sets Ni,j are given by

N1,1 = Z≥3,N1,−1 = Z≤−2,

N−1,j = −N1,−j , j = ±1.

For q = 2hq + 3 one has

N1,2hq = {2}, N1,−2hq = {−1}, N1,2hq+1 = Z≥3, N1,−(2hq+1) = Z≤−2

N2,−2hq = {−1}, N2,2hq+1 = Z≥2, N2,−(2hq+1) = Z≤−2

Ni,i−2 = {1}, 3 ≤ i ≤ κq, Ni,−2hq = {−1}, 1 ≤ i ≤ κq,
Ni,2hq+1 = Z≥2, Ni,−(2hq+1) = Z≤−2.

Ni,j = ∅ for all other 1 ≤ i ≤ κq, j ∈ Aκq and again N−i,j = −Ni,−j for all
1 ≤ i ≤ κq, j ∈ Aκq .

Proof. We will prove the case q = 2hq + 2 , the case of odd q is similar. If x ∈ Φo1
then either x = [[0; 1hq ,−m, . . .]] for some m ≥ 1 or x = [[0; 1hq−1,m, . . .]] for some
m ≥ 2. In both cases y = [[0; 1, x]] /∈ Iq whereas y = [[0;−1, x]] ∈ Φ−hq respectively
y = [[0;±n, x]] ∈ Φ±hq for n ≥ 2. For x ∈ Φohq one has x = [[0; 1,−m, . . .]] for
some m ≥ 1 or x = [[0;m, . . .]] for some m ≥ 2. In this case y = [[0; 1, x]] ∈ Φhq−1

and y = [[0;±n, x]] ∈ Φ±hq whereas y = [[0;−1, x]] ∈ Φ−hq . For x ∈ Φi, 2 ≤ i ≤
hq − 1 = κq − 1 finally one has either x = [[0; 1hq+1−i,−m, . . .]] for some m ≥ 1
or x = [[0; 1hq−i,m, . . .]] for some m ≥ 2. In both cases y = [[0; 1, x]] ∈ Φi−1 and
y = [[0;±n, x]] ∈ Φ±hq for all n ≥ 2 whereas y = [[0;−1, x]] ∈ Φhq . All other
sets Ni,j are empty for 1 ≤ i ≤ hq and j ∈ Aκq . That N−i,j = −Ni,−j for all
1 ≤ i ≤ κq, j ∈ Aκq is obvious from Φ−i = −Φi and the form of the maps ϑn.

This Lemma allows us to derive explicit expressions for the transfer operator Ls
for the map fq : Iq → Iq. Using the index sets Ni =

⋃
j∈Aκq

Ni,j we can rewrite the
transfer operator Ls in (4) as

Lsg(x) =
∑
i∈Aκq

χΦi(x)
∑
n∈Ni

(
ϑ′n(x)

)s
g
(
ϑn(x)

)
,

where χΦi is the characteristic function of the set Φi. If we now introduce vector
valued functions g = (g)i∈Aκq with gi := g|Φi then the operator Ls can also be
written as follows

(Lsg)i(x) =
∑
j∈Aκq

∑
n∈Ni,j

(
ϑ′n(x)

)s
gj
(
ϑn(x)

)
=
∑
j∈Aκq

∑
n∈Ni,j

(
1

z + nλq

)2s

gj

(
−1

z + nλq

)
, x ∈ Φi.

If gi is continuous on Φi for all i ∈ Aκq then (Lsg)i is also continuous on Φi since
ϑn(Φi) ⊂ Φj for n ∈ Ni,j . This implies that Ls is well defined on the Banach space
B = ⊕i∈AκqC(Φi) of piecewise continuous functions on the intervals Φi. To give
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explicit expressions for this operator on the space B denote for n ∈ N by L∞±n,s the
operator

L∞±n,sg(x) =
∞∑
l=n

1
(x± nλq)2s

g

(
−1

x± nλq

)
,

and by L±n,s the operator

L±n,sg(x) =
1

(x± nλq)2s
g

(
−1

x± nλq

)
.

Then we have

Lemma 4.3. For q = 3 the operator Ls is given by

(Lsg)1 = L∞3,sg1 + L∞−2,sg−1

(Lsg)−1 = L∞2,sg1 + L∞−3,sg−1.

For q = 2hq + 2 one has

(Lsg)1 = L∞2,sghq + L∞−1,sg−hq

(Lsg)i = L1,sgi−1 + L∞2,sghq + L∞−1,sg−hq , 2 ≤ i ≤ hq,
respectively

(Lsg)−1 = L∞1,s ghq + L∞−2,s g−hq

(Lsg)−i = L−1,s g−(i−1) + L∞1,s ghq + L∞−2,s g−hq , 2 ≤ i ≤ hq.
For q = 2hq + 3 one has

(Lsg)1 = L2,s g2hq + L∞3,s g2hq+1 + L∞−2,s g−(2hq+1) + L−1,s g−2hq ,

(Lsg)2 = L∞2,s g2hq+1 + L∞−2,s g−(2hq+1) + L−1,s g−2hq ,

(Lsg)i = L1,s g(i−2) + L∞2,s g2hq+1 + L∞−2,s g−(2hq+1) + L−1,s g−2hq , 1 ≤ i ≤ 2hq + 1,

respectively

(Lsg)−1 = L1,s g2hq + L∞2,s g2hq+1 + L∞−3,s g−(2hq+1) + L−2,s g−2hq ,

(Lsg)−2 = L1,s g2hq + L∞2,s g2hq+1 + L∞−2,s g−(2hq+1),

(Lsg)−i = L1,s g2hq + L∞2,s g2hq+1 + L∞−2,s g−(2hq+1) + L−1,s g2−i, 1 ≤ i ≤ 2hq + 1.

Unfortunately, on the space of piecewise continuous functions the operator Ls is
not of trace class. In fact, it not even compact.

Much better spectral properties however can be achieved by defining Ls on a
Banach space B = ⊕i∈AκqB(Di) with B(Di) the Banach space of holomorphic
functions on certain discs Di ⊂ C with Φi ⊂ Di, i ∈ Aκq , continuous on Di

together with the sup norm. This is possible, since all the maps ϑ±m, m ≥ 1
have holomorphic extensions to complex neighborhoods of Iq with the following
properties:

Lemma 4.4. There exist open discs Di ⊂ C, i ∈ Aκq , with Φi ⊂ Di such that for
all n ∈ Ni,j we have ϑn(Di) ⊂ Dj.

Here Di denotes the closure of the set Di. For the proof of the Lemma it suffices
to show the existence of open intervals Ii ⊂ R, i ∈ Aκq , which have the properties
• Φi ⊂ Ii and
• ϑn(Ii) ⊂ Ij for all n ∈ Ni,j .
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Since the maps ϑn are conformal it is clear that the discs Di with center on the
real axis and intersection equal to the open intervals Ii satisfy Lemma (4.4).

Using (2.7) the two conditions on Ii can also be written as

STn Ii ⊂ Ij and Φi ⊂ Ii for all n ∈ Ni,j and all i, j ∈ Aκq
In the cases q = 3 and q = 4 we give explicit intervals fulfilling conditions (4).

For the case q ≥ 5 we first show the existence of intervals Ii satisfying the weaker
condition

STn Ii ⊂ Ij and Φi ⊂ Ii for all n ∈ Ni,j .
The existence of intervals Ii satisfying (4) then follows by a simple perturbation
argument.

Lemma 4.5. The intervals

I1 :=
(
−1,

1
2

)
and I−1 := −I1 for q = 3,

respectively

I1 :=
(
−1,

λq
4

)
and I−1 := −I1 for q = 4,

satisfy Condition (4).

Proof. The above intervals Ii, i = ±1 obviously satisfy

Φ1 =
[
−λq

2
, 0
]
⊂ I1 and Φ−1 =

[
0,
λq
2

]
⊂ I−1,

since λ3 = 1 and λ4 =
√

2. For q = 3 one has N1,1 = Z≥3 and N1,−1 = Z≤−2

respectively N−1,−1 = −Z≥3 and N−1,1 = −Z≤−2. Hence we have to show that
θn(I1) ⊂ I1 for all n ≥ 3 and θn(I1) ⊂ I−1 for all n ≤ −2. Since all the maps are
strictly increasing it is enough to show θn(−1) > −1 and θn( 1

2 ) < 1
2 for all n ≥ 3

respectively θn(−1) > − 1
2 and θn( 1

2 ) < 1 for all n ≤ −2. But θn(−1) = −1
−1+n ≥

−1
2 > −1 and θ−n( 1

2 ) = −1
1
2−n

= 1
n− 1

2
≤ 2

3 < 1 for all n ≥ 2. Since N−i,j = −Ni,−j
and I−1 = −I1 the result for the interval I−1 follows .
Consider now the case q = 4. Then one has N1,1 = Z≥2 and N1,−1 = Z≤−1

respectively N−1,−1 = −Z≥2 and N−1,1 = −Z≤−1. Hence one finds that θn(−1) =
−1

−1+nλ4
≥ −1
−1+2λ4

> −1 since 2λ4 = 2
√

2 > 2 and θn(λ4
4 ) = −1

λ4
4 +nλ4

< 0 < λ4
4 for

all n ≥ 2. Furthermore θ−n(−1) = −1
−1−nλ4

≥ 0 > −λ4
4 and θ−n(λ4

4 ) = −1
λ4
4 −nλ4

≤
λ4
4 −

λ4
4 = 4

3λ4
< 1, since 3

√
2 > 4 for all n ≥ 1. Since N−i,j = −Ni,−j and

Di = −D−i the Lemma is proved.

Proof of Lemma 4.4 for q = 3, 4. The maps ϑn are all conformal, which means that
they preserve angles and generalized circles. It is now easy to see that the discs D±1

which have diameters along the intervals I±1 satisfy the conditions of the lemma
for q = 3 and q = 4.

To prove Lemma 4.4 for q ≥ 5 we need several Lemmas.

Lemma 4.6. For q = 2hq + 2, hq ≥ 2 and 0 ≤ i ≤ hq

(ST )hq−i
(
−λq

2

)
= [[−1; (−1)i]], i = 0, . . . , hq
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and

−λq = [[−1; ]] < [[−1; (−1)1]] < . . .

< [[−1; (−1)hq−1]] < [[−1; (−1)hq ]] = −λq
2
.

Proof. By (2.1), (2.2) and (2.3) we have

(ST )hq−i
(
−λ

2

)
= (ST )hq−i (ST )hq 0 = (ST )−i−2 0

= (T−1S)i T−1 ST−1S 0 = T−1 (ST−1)i 0

= [[−1; (−1)i]].

This shows relation (4.6). By definition it is clear that −λq = [[−1; ]] and then
inequalities (4.6) follow immediately from §2.4.

Next we can prove

Lemma 4.7. For q = 2hq + 2, hq ≥ 2 define the intervals Ii respectively I−i for

1 ≤ i ≤ hq by Ii :=
(

[[−1; (−1)i]], λq4
)

and I−i := −Ii. Then

ϑ±n(I±i) ⊂ I±hq for all n ≥ 2, i = 1, . . . , hq,

ϑ±n(I∓i) ⊂ I±hq for all n ≥ 1, i = 1, . . . , hq and

ϑ±1(I±i) ⊂ I±i−1 for all i = 2, . . . , hq.

Hence ϑn(Ii) ⊂ Ij for all n ∈ Ni,j.

Proof. Since Ni,hq = Z≥2 for all 1 ≤ i ≤ hq we have to show that ϑn(Ii) ⊂ Ihq for
all 1 ≤ i ≤ hq and all n ≥ 2. But ϑn([[−1; (−1)i]]) = [[0;n− 1, (−1)i]] > −λq2 by 2.2.

On the other hand ϑn(λq4 ) = −1

nλq+
λq
4

< 0 < λq
4 and hence ϑn(Ii) ⊂ Ihq . Consider

next the case Ni,−hq = Z≤−1 for 1 ≤ i ≤ hq. There one has ϑ−n([[−1; (−1)i]]) =
[[0;−n− 1, (−1)i]] > 0 > −λq4 . Furthermore one finds for all n ≥ 1 that ϑ−n(λq4 ) =
−1

−nλq+
λq
4

≤ 4
3λq

<
λq
2 since for q ≥ 6 one has λq ≥

√
3. Hence ϑ−n(Ii) ⊂ I−hq

for all n ≥ 1. Consider finally the case Ni,i−1 = {1} for 2 ≤ i ≤ hq. In this case
one finds ϑ1([[−1; (−1)i]]) = −1

λq+[[−1;(−1)i]] = [[−1; (−1)i−1]]. Furthermore ϑ1(λq4 ) =
−1

λq+
λq
4

< 0 < λq
4 and hence ϑ1(Ii) ⊂ Ii−1 for all 2 ≤ i ≤ hq. The intervals I−i have

again analogous properties.

For odd q ≥ 5 we need

Lemma 4.8. For q = 2hq + 3, hq ≥ 1 one has

(ST )hq−i
(
−λq

2

)
= [[−1; (−1)i,−2, (−1)hq ]] for 0 ≤ i ≤ hq,

(ST )hq+1−i ([[0; 1hq ]]
)

= [[−1; (−1)i]] for 1 ≤ i ≤ hq
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and
−λq = [[−1; ]] < [[−1;−2, (−1)hq ]] < [[−1;−1]] < [[−1; (−1)1,−2, (−1)hq ]]

< [[−1; (−1)2]] < [[−1; (−1)2,−2, (−1)hq ]] < [[−1; (−1)3]] < . . .

< [[−1; (−1)hq−1,−2, (−1)hq ]] < [[−1; (−1)hq ]] < [[−1; (−1)hq ,−2, (−1)hq ]]

= −λq
2
.

Proof. By (2.1), (2.2) and (2.3) we have

(ST )hq−i
(
−λ

2

)
= (ST )hq−i (ST )hq ST 2 (ST )hq 0

= (ST )−i−3 ST 2 (ST )hq 0

= T−1 (ST−1)i ST−1 ST−1S ST 2 (ST )hq 0

= T−1 (ST−1)i ST−1 (ST )hq+1 0

= T−1 (ST−1)i ST−1 (ST )−hq−2 0

= T−1 (ST−1)i ST−2 (ST−1)hq ST−1S 0

= T−1 (ST−1)i ST−2 (ST−1)hq 0

= [[−1; (−1)i,−2, (−1)hq ]].

Similarly, we have

(ST )hq+1−i ([[0; 1hq ]]
)

= (ST )hq+1−i (ST )hq 0

= (ST )−i−2 0

= T−1 (ST−1)i ST−1S 0

= T−1 (ST−1)i 0

= [[−1; (−1)i]].

This shows relation (4.8).
The lexicographic ordering in §2.4 implies

[[−1; ]] < [[−1;−2, (−1)hq ]] < [[−1;−1]] < [[−1;−1,−2, (−1)hq ]] < . . .

. . . < [[−1; (−1)hq ]] < [[−1; (−1)hq , 2, (−1)hq ]] = −λq
2
.

Using the identities in (4.8) shows (4.8).

Now we can prove the following lemma for odd q

Lemma 4.9. For q = 2hq + 3, hq ≥ 1 define the intervals

I2i+1 =
(
[[−1; (−1)i,−2, (−1)hq ]],

λq
4
)

for 0 ≤ i ≤ hq,

I2i =
(
[[−1; (−1)i]],

λq
4
)

for 1 ≤ i ≤ hq.

respectively I−i := −Ii, 1 ≤ i ≤ κq = 2hq + 1. Then Φi ⊂ Ii for all 1 ≤ i ≤ κq
and ϑn(Ii) ⊂ Ij for all n ∈ Ni,j , (i, j) 6= (±k,±(k − 2)), 3 ≤ k ≤ 2hq + 1, whereas
ϑn(I±k) ⊂ I±(k−2) for all n ∈ N±k,±(k−2), 3 ≤ k ≤ 2hq + 1.
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Proof. Since the proof of this Lemma proceeds along the same lines as in the case
of even q, we restrict ourselves to the case where ϑn(Ii) ⊂ Ij for n ∈ Ni,j . This
happens only for the pairs (i, j) = (±k,±(k − 2)), where Ni,j = {1} respectively
Ni,j = {−1}. In these cases one finds indeed that ϑ1([[−1; (−1)i,−2, (−1)hq ]]) =
[[−1; (−1)i−1,−2, (−1)hq ]] respectively ϑ1([[−1; (−1)i]]) = [[−1; (−1)i−1]]. Hence the
left boundary point of these intervals is mapped onto the left boundary point of the
image interval. The case of negative indices (i, j) follows again from the symmetry
of the intervals and the sets Ni,j .

To prove finally Lemma 4.4 one has to enlarge the intervals Ii a little bit so that
ϑn(Ii) ⊂ Ij for all n ∈ Ni,j . In the case q = 2hq + 2, hq ≥ 2 one can take the
intervals Ii = −I−i = ([[−1; (−1)i, ni]],

λq
4 ) with ni > ni−1 for 2 ≤ i ≤ hq and n1

large enough. In the case q = 2hq + 3, hq ≥ 1 one can choose the intervals

I2i+1 = −I−2i−1 =
(
[[−1; (−1)i,−2, (−1)hq , n2i+1]],

λq
4
)

for 0 ≤ i ≤ hq,

I2i = −I−2i =
(
[[−1; (−1)i, n2i]],

λq
4
)

for 1 ≤ i ≤ hq.

with n2i+1 > n2i > n2i−1 > n2i−2 for all 1 ≤ i ≤ hq and n1 large enough.
The existence of the discs Di, i ∈ Aκq , of Lemma 4.4 shows that the operator

Ls is well defined on the Banach space B = ⊕i∈AκqB(Di) with B(Di) the Banach
space of holomorphic functions on the disc Di with Φi ⊂ Di, i ∈ Aκq , with the sup
norm. In fact we have the following theorem.

Theorem 4.10. The operator Ls : B → B is nuclear of order zero for <s > 1
2 and

extends to a meromorphic family of nuclear operators of order zero with poles only
at the points sk = 1−k

2 , k = 0, 1, 2 . . ..

Proof. It is now easy to verify that the operator Ls can be written as a 2κq × 2κq
matrix operator which for even q has the form

Ls =



0 0 . . . 0 L∞2,s L∞−1,s 0 . . . 0 0
L1,s 0 . . . 0 L∞2,s L∞−1,s 0 . . . 0 0

0 L1,s 0 . . . L∞2,s L∞−1,s 0 . . . 0 0
...

...
. . .

...
...

...
...

...
...

...
0 . . . 0 L1,s L∞2,s L∞−1,s 0 . . . 0 0
0 0 . . . 0 L∞1,s L∞−2,s L−1,s 0 . . . 0
...

...
...

...
...

...
...

. . .
...

...
0 0 . . . 0 L∞1,s L∞−2,s . . . 0 L−1,s 0
0 0 . . . 0 L∞1,s L∞−2,s 0 . . . 0 L−1,s

0 0 . . . 0 L∞1,s L∞−2,s 0 . . . 0 0


.
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For odd q it has the form

Ls =



0 . . . 0 L2,s L∞3,s L∞−2,s L−1,s 0 . . . 0
0 . . . 0 0 L∞2,s L∞−2,s L−1,s 0 . . . 0

L1,s
. . . 0 0 L∞2,s L∞−2,s L−1,s 0 . . . 0

...
. . . . . .

...
...

...
...

...
...

...
0 . . . L1,s 0 L∞2,s L∞−2,s L−1,s 0 . . . 0
0 . . . 0 L1,s L∞2,s L∞−2,s 0 L−1,s . . . 0
...

...
...

...
...

...
...

. . . . . .
...

0 . . . 0 L1,s L∞2,s L∞−2,s 0 0
. . . L−1,s

0 . . . 0 L1,s L∞2,s L∞−2,s 0 0 . . . 0
0 . . . 0 L1,s L∞2,s L∞−3,s L−2,s 0 . . . 0


with

L∞±l,sf(z) =
∞∑
n=l

(
1

z ± nλq
)2sf(

−1
z ± nλq

) for l = 1, 2, 3,

respectively

Ll,sf(z) = (
1

z + lλq
)2sf(

−1
z + lλq

) for l = ±1,±2.

As for the transfer operator of the Gauss map (cf. [10]) one shows that the oper-
ators L∞l,s, l = ±1,±2,±3 define meromorphic families of nuclear operators L∞l,s :
B(Di) → B(Dj) in the Banach spaces of holomorphic functions on the discs for
which Ni,j = Z≥l respectively Ni,j = Z≤−l for l = 1, 2, 3. These operators have
poles at the points s = sk = 1−k

2 for k = 0, 1, · · · . On the other hand the operators
Ll,s, l = ±1,±2 with Ll,s : B(Di) → B(Dj) are holomorphic nuclear operators in
the entire s-plane in the corresponding Banach spaces of holomorphic functions on
the discs for which Ni,j = {±l}, l = 1, 2. Hence the operator Ls has these properties
in the Banach space B = ⊕i∈AκqB(Di).

5. The reduced transfer operators Ls,ε, ε = ±1 and functional equations
for their eigenfunctions.

5.1. The symmetry operator P : B → B. From the above matrix representation
of the transfer operator Ls it can be seen that this operator has a certain symmetry
which we will discuss next. For this purpose, define the operator P : B → B as

(Pf)i(z) := f−i(−z) for f = (fi)i∈Aκq .

This operator is well-defined, since D−i = −Di for all i ∈ Aκq and P 2 = idB . That
P is indeed a symmetry follows from the following lemma.

Lemma 5.1. The operators P : B → B and Ls : B → B commute for all s ∈
C, s 6= sk, k = 0, 1, 2, · · · .

Proof. Let <s > 1
2 and suppose that f ∈ B. To extend ϑ′n to the complex discs

Di. we use the convention (n + z)2s := ((n + z)2)s It is then easy to see that

Ll,s(Pf)i(z) =
∑
n≥l

(
1

z+nλq

)2s

f−i

(
1

z+nλq

)
=
∑
n≥l

(
1

−z−nλq

)2s

f−i

(
−1

−z−nλq

)
=

L−l,s(f−i)(−z). for any positive integer l. From the form of the matrices in the
proof of Theorem 4.10 it follows that the matrix elements of Ls satisfy the iden-
tities: (Ls)i,j = Ll,s if and only if (Ls)−i,−j = L−l,s respectively (Ls)i,j = L∞l,s
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if and only if (Ls)−i,−j = L∞−l,s. Combining these two observations, the fact
that LsPf(z) = PLsf(z) follows immediately. Since both the operators P Ls
and Ls P are meromorphic in the entire s-plane with only poles at the points
s = sk, k = 0, 1, . . . they coincide there.

This allows us to restrict the operator Ls to the eigenspaces of the operator P
which is an involution and therefore has the eigenvalues ±1. Denote these eigenspa-
ces by B± . Then f = (fi)i∈Aκq ∈ B± if and only if f−i(z) = ± fi(−z) for i ∈ Aκq .
Let Bκq denote the Banach space Bκq = ⊕1≤i≤κqB(Di) with the discs as defined
earlier in Lemma 4.4. Then the transfer operator Ls restricted to the spaces B±
induces the following operators Ls,± in the Banach space Bκq . For q = 2hq + 2,
κq = hq and −→g = (gi)1≤i≤κq we get:

(Ls,±−→g )1(z) = L∞2,s ghq (z)± L∞−1,s ghq (z)

(Ls,±−→g )i (z) = L1,s gi−1(z) + L∞2,s ghq (z)± L∞−1,s ghq (z), 2 ≤ i ≤ hq. (8)

For q = 3 on the other hand we get

(Ls,±−→g )1(z) = L∞3,s g1(z)± L∞−2,s g1(z),

respectively for q = 2hq + 3 > 5, κq = 2hq + 1

(Ls,±−→g )1(z) =L2,s g2hq (z) + L∞3,s gκq (z)± L−1,s g2hq (z)± L∞−2,s gκq (z)

(Ls,±−→g )2(z) =L∞2,s gκq (z)± L−1,s g2hq (z)± L∞−2,s gκq (z) (9)

(Ls,±−→g )i(z) =L1,s gi−2(z) + L∞2,s gκq (z)± L−1,s g2hq (z)± L∞−2,s gκq (z),
3 ≤ i ≤ κq.

For i > 0 the operators L∞i,s and Li,s coincide with the operators L∞i,s and Li,s,
whereas L∞−i,sg(z) =

∑∞
n=i

1
(z−nλq)2s g( 1

z−nλq ) and L−i,sg(z) = 1
(z−iλq)2s g( 1

z−iλq ).

5.2. Functional equations. It is well-known that for modular groups, i.e. finite
index subgroups of G3 = PSL(2,Z), the eigenfunctions of the transfer operator Ls
with eigenvalue ρ = 1 fulfill simple finite term functional equations [7], so called
Lewis equations, which are closely related to the period functions of Lewis and
Zagier [9] for these groups. In the present case we can also derive such functional
equations, but it is not clear how their holomorphic solutions are related to the
period functions of the Hecke triangle groups Gq for arbitrary q. In the case q = 3
it was shown in [2] that the solutions of the functional equation derived from our
transfer operator Ls for <s = 1

2 are indeed in one to one correspondence with the
Maass cusp forms for G3. Since the spectrum of the operator Ls is the union of the
spectra of the two operators Ls,ε, ε = ±1, we use these two operators to derive the
corresponding functional equations. In the case q = 3 their eigenfunctions −→g = (g1)
with eigenvalue ρ = 1 obey the equation

g1 = g1|(N3 + εN−2) (10)

where we used the so-called slash-action defined by

g1|Nk(z) = g1|
∞∑
l=k

ST l :=
∞∑
l=k

(
1

z + lλq

)2s

g1

(
−1

z + lλq

)
, k ≥ 1,
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respectively

g1|N−k(z) = g1|
∞∑
l=k

S̃T−l :=
∞∑
l=k

(
1

z − lλq

)2s

g1

(
1

z − lλq

)
, k ≥ 1,

where Tz = z + λq, Sz = −1
z and S̃z = 1

z . This action is similar to the usual slash-
action of weight s but we extended it in the natural way to the group algebra of Gq
over C. One now sees that g1|N3(1−T ) = g1|ST 3 and g1|N−2(1−T ) = −g1|S̃T−1,
which leads to the following four term functional equation

g1|(1− T ) = g1|(ST 3 − εS̃T−1),

or explicitly,

g1(z) = g1(z + 1) +
(

1
z + 3

)2s

g1

(
−1
z + 3

)
− ε
(

1
z − 1

)2s

g1

(
1

z − 1

)
. (11)

An easy calculation shows that every solution of eq. (10) satisfies the equation
g1(z) = εg1(−z − 1). Therefore only solutions g1 of eq.(11) with this property lead
to eigenfunctions of the transfer operator. But then g1 obeys also the four term
functional equation studied in [2]

g1(z) = g1(z + 1) +
(

1
z + 3

)2s

g1

(
−1
z + 3

)
−
(

1
z − 1

)2s

g1

(
−z
z − 1

)
. (12)

On the other hand, every solution g1 of eq. (12) with g1(z) = εg1(−z − 1) is also a
solution of eq. (11).

For q = 2hq + 2, hq ≥ 1, on the other hand we find that for an eigenfunction
−→g = (gi)1≤i≤hq g1 = ghq |(N2 + εN−1) and by induction on i:

gi = g1|Pi−1(ST ), 2 ≤ i ≤ hq
where g|Pi(g) for g ∈ Gq is an abbreviation for g|Pi(g) = g|

∑i
l=0 g

l. Hence the
function g1 fulfills the equation

g1 = g1|Phq−1(ST )(N2 + εN−1).

But |N2(1 − T ) = |ST 2 and |N−1(1 − T ) = | − S̃ leading to the q-term functional
equation

g1|(1− T ) = g1|Phq−1(ST )(ST 2 − εS̃),
which for q = 4 reads explicitly as

g1(z) = g1(z + λ4) +
(

1
z + 2λ4

)2s

g1

(
−1

z + 2λ4

)
− ε
(

1
z

)2s

g1

(
1
z

)
.

For q = 6 corresponding to hq = 2 one finds that

g1(z) = g1(z + λ6) +
(

1
z + 2λ6

)2s

g1

(
−1

z + 2λ6

)
− ε
(

1
z

)2s

g1

(
1
z

)
+
(

1
−λ6z + 1− 2λ2

6

)2s

g1

(
z + 2λ6

−λ6z + 1− 2λ2
6

)
− ε
(

1
1 + λ6z

)2s

g1

(
−z

1 + λ6z

)
.

For q = 2hq + 3, hq ≥ 1 one finds that

g1 = g2hq |ST 2 + g2hq+1|N3 + εg2hq |S̃T−1 + εg2hq+1|N−2

respectively
g2 = g2hq+1|N2 + εg2hq |S̃T−1 + εg2hq+1|N−2
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and hence

g1 = g2 + g2hq |ST 2 − g2hq+1|ST 2. (13)

Induction on i shows furthermore

g2i = g2|Pi−1(ST ), 1 ≤ i ≤ hq,

respectively

g2i+1 = g1|(ST )i + g2|Pi−1(ST ), 1 ≤ i ≤ hq.

Therefore

g2hq = g2|Phq−1(ST ) and g2hq+1 = g1|(ST )hq + g2|Phq−1(ST ).

Inserting this into equation (13) shows that

g2 = g1 + g1|(ST )hq+1T.

This allows to express both g2hq and g2hq+1 in terms of g1:

g2hq = g1|
(
1 + (ST )hq+1T

)
Phq−1(ST )

respectively

g2hq+1 = g1|(ST )hq +
(
g1 + g1|(ST )hq+1T

)
Phq−1(ST ).

Inserting these expressions into equation (13) gives finally the following functional
equation for g1:

g1 = g1|Phq−1(ST )ST 2 + g1|(ST )hq+1TPhq−1(ST )ST 2 + g1|(ST )hqN3

+ g1|Phq−1(ST )N3 + g1|(ST )hq+1TPhq−1(ST )N3

+ ε(g1|Phq−1(ST )S̃T−1 + g1|(ST )hq+1TPhq−1(ST )S̃T−1 + g1|(ST )hqN−2

+ g1|(ST )hq+1TPhq−1(ST )N−2 + g1|Phq−1(ST )N−2)..

Since |N3(1− T ) = |ST 3 and |N−2 = | − S̃T−1 the ”Lewis” equation for the Hecke
triangle group Gq, q = 2hq + 3 has the form:

g1|(1− T ) = g1|(Phq−1(ST )ST 2 + (ST )hq+1TPhq−1(ST )ST 2 + (ST )hqST 3)

− ε g1|(Phq−1(ST )S̃ + (ST )hq+1TPhq−1(ST )S̃ + (ST )hq S̃T−1).

For q = 5 corresponding to hq = 1 this reads

g1|(1− T ) = g1|(ST 2 + (ST )2TST 2 + (ST )2T 2)

− ε g1|(S̃ + (ST )2T S̃ + ST S̃T−1).

6. The Selberg zeta function for Hecke triangle groups Gq. We want to
express the Selberg zeta function for the Hecke triangle groups Gq in terms of
Fredholm determinants of the transfer operator Ls for the map fq. Our construction
is analogous to that for modular groups and the Gauss map [3]. We start with a
discussion of the Ruelle zeta function for the H-N map fq.



26 DIETER MAYER, TOBIAS MÜHLENBRUCH AND FREDRIK STRÖMBERG

6.1. The Ruelle zeta function and the transfer operator for the Hurwitz-
Nakada map fq. We have seen that the transfer operator Ls for the map fq :
Iq → Iq can be written as

(Lsf)(x) =
∑

n∈Z:[[0;n,x]]∈Aq

(ϑ′n(x))sf(ϑn(x)), (14)

where Aq denotes the set of regular λq-continued fraction expansions of all points
x ∈ Iq and if x = [[0; a1, a2, . . .]] ∈ Iq then [[0;n, x]] denotes the continued fraction
[[0;n, a1, a2, . . .]] . The iterates Lks , k = 1, 2, . . . of this operator then have the form

(Lksf)(x) =
∑

(n1,...,nk)∈Zk:[[0;n1,...,nk,x]]∈Aq

(ϑ′n1,...,nk
(x))sf(ϑn1,...,nk(x)),

where ϑn1,...,nk denotes the map ϑn1 ◦ . . . ◦ ϑnk .
We have seen that the set of k-tuples (n1, . . . , nk) ∈ Zk with the property that

[[0;n1, . . . , nk, x]] ∈ Aq depends only on the interval Ii for x ∈ I◦i , the interior of the
interval Ii. Denote by Fki , 1 ≤ i ≤ κq the set

Fki = {(n1, . . . , nk) ∈ Zk : [[0;n1, . . . , nk, x]] ∈ Aq for all x ∈ I◦i }.
It follows that if x ∈ Ii then Lks can be written as

(Lksf)(x) =
∑

(n1,...,nk)∈Fki

(ϑ′n1,...,nk
)s(x)f(ϑn1,...,nk(x)).

If fj , j ∈ Aκq denotes the restriction f |Ij and nk = (n1, . . . , nk) ∈ Zk we get

(Lksf)i(x) =
∑
j∈Aκq

∑
nk∈Fki

(ϑ′nk)s(x)χIj (ϑnk(x))fj(ϑnk(x)).

On the Banach space B = ⊕i∈AκqB(Di) we get

(Lksf)i(z) =
∑
j∈Aκq

∑
nk∈Fki

(ϑ′nk)s(z)χDj (ϑnk(z))fj(ϑnk(z)).

The trace of this operator on this Banach space is then given by the well-known
formula for such composition operators [11]

traceLks =
∑
i∈Aκq

∑
nk∈Fki

(ϑ′nk)s(z?nk)
1

1− ϑ′nk(z?nk)
,

where z?nk = [[0;n1, . . . , nk]] is the unique fixed point of the map ϑn1,...,nk : Di → Di

which defines a hyperbolic element in the group Gq. These points are however in
one-to-one correspondence with the periodic points of period k of the map fq : Iq →
Iq. Hence also the following identity holds

traceLks − traceLks+1 =
∑
i∈Aκq

∑
nk∈Fki

((ϑn1 ◦ . . . ◦ ϑnk)′)s(z?nk)

=
∑
i∈Aκq

∑
nk∈Fki

k∏
l=1

(
ϑ′nl(ϑnl+1 ◦ . . . ◦ ϑnk(z?nk)

)s

=
∑

z?∈Fixfkq

k−1∏
l=0

(
f ′q(f

l
q(z

?))
)−s

. (15)



TRANSFER OPERATOR FOR HECKE TRIANGLE GROUPS 27

Therefore we get

Proposition 1. The Ruelle zeta function ζR(s) = exp
∑∞
n=1

1
nZn(s) for the H-N

map fq : Iq → Iq can be written as ζR(s) = det(1−Ls+1)
det(1−Ls) with Ls : B → B as defined

in Theorem 14 and s ∈ C.

Proof. For <s large enough we have, comparing equations (3.1) and (15) Zn(s) =
traceLns − traceLns+1 and therefore ζR(s) = det(1−Ls+1)

det(1−Ls) Zn(s). Since the operators
Ls are meromorphic and nuclear in the entire s-plane their Fredholm determinants
also allow such a meromorphic continuation, which proves the proposition.

6.2. The transfer operator Ks. As discussed earlier, there is a one to one corre-
spondence between the closed orbits of the map fq : Iq → Iq and the closed orbits
of the geodesic flow on the Hecke surfaces apart from the closed orbits of the two
points rq = [[0; 1hq−1, 2]] for even q , respectively rq = [[0; 1hq , 2, 1hq−1, 2]] for odd q,
and −rq, which are not equivalent under the map fq, but are equivalent under the
group Gq and hence correspond to the same closed orbit of the geodesic flow. In
the Ruelle zeta function ζR(s) for the map fq the contributions of both the orbits
of rq and −rq are included. To relate this function to the Selberg zeta function
ZS(s) for the geodesic flow on the Hecke surfaces we have to subtract the contri-
bution of one of these two orbits of fq, say of rq, to this function. This we can
achieve by subtracting the contribution of the orbit O+ of the point rq from the
partition functions Zlκq (s) for the map fq for all l = 1, 2, . . .. Consider therefore
the corresponding Ruelle function ζOR (s) = exp(

∑∞
n=1

1
nZ
O+
n (s)) with

ZOn (s) =

{
0 if κq - n∑
x∈O+

exp
(
−s
∑n−1
k=0 ln f ′q(f

k
q (x))

)
if κq | n.

(16)

If n = lκq we find that ZO+
lκq

(s) = κq exp(−slrO+) and hence ζO+
R (s) = 1

1−exp(−srO+ )

where rO+ = ln(fκqq )′(rq). We now define the transfer operator LO+
s : B → B. Here

Bκq = ⊕κqi=1B(Di) as defined in 5.1. For q = 2hq + 2 we set

(LO+
s
−→g )i(z) = L1,sgi+1(z), 1 ≤ i ≤ hq − 1,

(LO+
s
−→g )hq (z) = L2,sg1(z). (17)

For q = 2hq + 3 on the other hand define

(LO+
s
−→g )i(z) =L1,sgi+1(z), 1 ≤ i ≤ hq

(LO+
s
−→g )hq+1(z) =L2,sghq+2(z)

(LO+
s
−→g )hq+i(z) =L1,sghq+i+1(z), 2 ≤ i ≤ hq (18)

(LO+
s
−→g )2hq+1(z) =L2,sg1(z).

In both cases the operator LO+
s then has the form
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LO+
s =



0 L1,s 0 . . . 0 0

0 0 L1,s
. . . 0 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . L1,s 0

0 0 0
. . . 0 L1,s

L2,s 0 0 . . . 0 0


respectively

LO+
s =



0 L1,s 0 . . . 0 . . . 0 0 0
...

. . . . . . . . . . . .
...

...
...

...

0 0
. . . L1,s 0 . . . 0 0 0

0 0 . . . 0 L2,s 0 . . . 0 0

0 0 0
. . . 0 L1,s 0 . . . 0

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

. . . . . . L1,s 0

0 . . . . . . . . . . . . . . .
. . . 0 L1,s

L2,s 0 . . . . . . . . . . . . . . . 0 0



.

Then one has

Lemma 6.1. The trace of the operator (LO+
s )n for q = 2hq + 2 and κq = hq is

given by

trace (LO+
s )n =

{
0 for κq - n
κq trace (Lhq−1

1,s L2,s)l for n = lκq,

respectively for q = 2hq + 3 and κq = 2hq + 1 by

trace (LO+
s )n =

{
0 for κq - n
κq trace (Lhq1,sL2,sL

hq−1
1,s L2,s)l for n = lκq.

Proof. Since the proof for odd q is completely analogous we restrict ourselves to
the case q = 2hq + 2. Induction on i shows that for 1 ≤ j ≤ hq one has for
−→g = (g)1≤j≤hq

((LO+
s )i−→g )j = Li1,s gi+j , 1 ≤ j ≤ hq − i

((LO+
s )i−→g )j = Lhq−j1,s L2,s L

i+j−hq−1
1,s gi+j−hq , hq − i+ 1 ≤ j ≤ hq.

But this shows that

((LO+
s )hq−→g )1 = Lhq−1

1,s L2,s g1, respectively

((LO+
s )hq−→g )j = Lhq−j1,s L2,s Lj−1

1,s gj , 2 ≤ j ≤ hq.
and therefore

trace (LO+
s )n = 0 if hq - n and

trace (LO+
s )n = hq trace (Lhq−1

1,s L2,s)l if n = l hq = l κq.

This proves the Lemma.
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Now, since trace (Lhq−1
1,s L2,s)l = trace (L2,s L

hq−1
1,s )l and

((L2,s L
hq−1
1,s )l g)(z) =

(
d

dz
(ϑ1h−1,2)l (z)

)s
g
(
(ϑ1h−1,2)l(z)

)
(recall that ϑ1h−1,2 = ϑ1 ◦ . . . ◦ ϑ1 ◦ ϑ2) we find that

trace (L2,s L
hq−1
1,s )l =

(
d

dz
(ϑ1h−1,2)l (z?)

)s 1
1− d

dz (ϑ1h−1,2)l(z?)
,

where z? is the attractive fixed point of ϑ1 ◦ . . . ◦ ϑ1 ◦ ϑ2, i.e. z? = rq. Thus

trace (L2,s L
hq−1
1,s )l − trace (L2,s+1 L

hq−1
1,s+1)l =

(
d

dz
(ϑ1h−1,2)l (z∗)

)s
=
(
d

dz
(ϑ1h−1,2) (z∗)

)l s
Lemma 6.2. The partition function Z

O+
n in (16) can be expressed in terms of the

transfer operators LO+
s in (17) and (18) as ZO+

n (s) = trace (LO+
s )n− trace (LO+

s+1)n.

Proof. We restrict ourselves again to the case q = 2hq+2. The case of odd q is anal-
ogous. Since (fκqq )′(z?) = ((ϑ1 ◦ . . . ◦ ϑ1 ◦ ϑ2)′(z?))−1 and Z

O+
n = κq exp(−sl) rO+

with rO+ =
∑κq−1
k=0 ln f ′q(f

k
q z
∗) = ln

∏κq−1
k=0 f ′q(f

k
q (z?)) = ln(fκqq )′(z?) we find that

ZO+
n =κq

(
(fκqq )′(z∗)

)−l s = κq((ϑ1 ◦ . . . ◦ ϑ1 ◦ ϑ2)′((z?)))l s

=κq (trace (L2,s L
hq−1
1,s )l − trace (L2,s+1 L

hq−1
1,s+1)l).

=trace (LO+
s )n − trace (LO+

s+1)n.

Hence the Ruelle zeta function ζ
O+
R (s) = exp(

∑∞
n=1

1
nZ
O+
n (s)) for the orbit O+

of the point rq can be expressed as

ζ
O+
R (s) =

det (1− LO+
s+1)

det (1− LO+
s )

.

We can furthermore show

Lemma 6.3. The Fredholm determinant det (1−LO+
s ) coincides with the Fredholm

determinant det (1 − Lhq−1
1,s L2,s) in the case q = 2hq + 2 and rq = [[0; (1)hq−1, 2]],

respectively with det (1 − Lhq1,s L2,s L
hq−1
1,s L2,s) in the case q = 2hq + 3 and rq =

[[0; (1)hq , 2, (1)hq−1, 2]] .

Proof. This lemma follows immediately from Lemma 6.1 and the following formula
which holds for any trace class operator L: − ln det(1− L) =

∑∞
n=1

1
n traceLn.

Remark 2. The spectra of the two operators LO+
s and Lhq−1

1,s L2,s are related
as follows: definition ((17)) implies that any eigenfunction −→g = (gi)1≤i≤hq with
eigenvalue ρ of LO+

s fulfills the equation ρhq−1g1 = Lhq−1
1,s ghq and hence also the

equation ρhqg1 = Lhq−1
1,s L2,sg1. Therefore every eigenvalue ρ of the operator LO+

s

determines an eigenvalue ρhq of the operator Lhq−1
1,s L2,s. Given on the other hand

an eigenfunction g of Lhq−1
1,s L2,s with eigenvalue ρ =| ρ | exp(iα), the function
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−→g (j) = (g)(j)
1≤j≤hq with g

(j)
1 = g and g

(j)
i = ρ

−(hq+1−i)
j Lhq−i1,s L2,s g, 2 ≤ i ≤ hq is

an eigenfunction of the operator LO+
s with eigenvalue ρj for ρ1, . . . , ρhq the hq-the

roots of ρ . This shows that the numbers ρj = hq
√
| ρ | exp(i αhq ) exp(2πi jhq ) , 0 ≤

j ≤ hq − 1 are eigenvalues of this operator. This shows again that det (1−LO+
s ) =

det (1− Lhq−1
1,s L2,s).

The contribution of the periodic orbit of the geodesic flow corresponding to the
periodic orbit O+ of the point rq which appears twice in the Fredholm determinant
of the transfer operator Ls for the map fq is given by det (1 − Lhq−1

1,s L2,s) for

q = 2hq + 2 respectively by det (1− Lhq1,s L2,s L
hq−1
1,s L2,s) for q = 2hq + 3. We then

arrive at the following theorem.

Theorem 6.4. The Selberg zeta function ZS(s) for the Hecke triangle group Gq
can be written as

ZS(s) =
det (1− Ls)
det (1−Ks)

=
det (1− Ls,+)(1− Ls,−)

det (1−Ks)
,

where Ls denotes the transfer operator of the Hurwitz-Nakada map fq : Iq → Iq
in Theorem 4.10, Ls,± denote the reduced transfer operators in (8, 5.1, 9) and
Ks = LO+

s is the transfer operator in (17) for even q , respectively (18) for odd q .
The spectrum σ(Ks) is given by

σ(Ks) = {
κq−1∏
l=0

(f lq(rq))
2s+2n, n = 0, 1, 2, . . .}

where κq denotes the period of the point rq

Proof. The spectrum σ(L) of a composition operator of the general form Lf(z) =
ϕ(z)f(ψ(z)) on a Banach space B(D) of holomorphic functions on a domain D
with ψ(D) ⊂ D is given by [11] σ(L) = {ϕ(z∗)ψ′(z∗)n, n = 0, 1, . . .} where z∗

is the unique fixed point of ψ in D. For q = 2hq + 2 the operator Ks has
this form with ϕ(z) = ((ϑ2 ◦ ϑ

hq−1
1 )′)s(z) and ψ(z) = ϑ2 ◦ ϑ

hq−1
1 (z). Therefore

z∗ = [[0; 2, 1hq−1]]. But (ϑ2◦ϑ
hq−1
1 )′(z∗) = ϑ′2(ϑhq−1

1 (z∗))
∏hq−1
l=1 ϑ′1((ϑ1)hq−1−l(z∗)).

Since ϑm(ϑ−1
m (z)) = z2 for any z ∈ C, m ∈ N, ϑhq−1

1 (z∗) = r = ϑ−1
2 (z∗) and

(ϑ1)hq−1−l(z∗) = (ϑ1)−1ϑ
hq−l
1 (z∗) it follows immediately that (ϑ2 ◦ ϑ

hq−1
1 )′(z∗) =

(z∗)2
∏hq−1
l=1 (ϑhq−l1 (z∗))2 =

∏hq−1
l=0 (f lq(z

∗))2 =
∏hq−1
l=0 (f lq(rq))

2.

Remark 3. Using the explicit form of the maps which fix rq, cf. e.g [13] Re-
mark 27 (where the upper right entry of the matrix for even q should read λ −
λ3) one can prove that the spectrum of the operator Ks can also be written as{
µn = l2s+2n, n = 0, 1, . . .

}
where

l =

√
4− λ2

q

Rλq + 2
=

√
2− λq
2 + λq

for even q and

l =
2− λq
Rλq + 2

=
2− λq

2 +Rλq
for odd q.

The Selberg zeta function ZS(s) for Hecke triangle groups Gq and small q has
been calculated numerically using the transfer operator Ls by one of us in [21].
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Besides the case q = 3, that is the modular group G3 = SL(2,Z) [2], we do not
yet know how the eigenfunctions of the transfer operator Ls with eigenvalue ρ = 1
are related to the automorphic functions for a general Hecke group Gq. The divisor
of ZS(s) is closely related to the automorphic forms on Gq (see for instance [6],p.
498). One would therefore expect that there exist explicit relationships also for
q > 3 similar to those obtained for modular groups between eigenfunctions of the
transfer operator Ls with eigenvalue one and automorphic forms related to the
divisors of ZS at these s-values.

Another interesting problem would be to understand the behavior of our transfer
operator Ls in the limit when q tends to ∞. In this limit the Hecke triangle group
Gq tend to the theta group Γθ, generated by Sz = −1

z and Tz = z + 2. This
group is conjugate to the Hecke congruence subgroup Γ0(2), for which we have
constructed a transfer operator in [7], [5]. One should understand how these two
different transfer operators are related to each other. The limit q → ∞ is quite
singular, since the group Γθ has two cusps whereas all the Hecke triangle groups
have only one cusp. Therefore one expects in this limit all the singular behavior
Selberg predicted already in [20]. Understanding the limit q → ∞ could also shed
new light on the Phillips-Sarnak conjecture [15] on the existence of Maass wave
forms for general non-arithmetic Fuchsian groups.
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