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AsstracT. We discuss the nearegi—multiple continued fractions and
their duals foriq = Zcos(g) which are closely related to the Hecke
triangle group$,, g = 3,4,.... They have been introduced in the case
g = 3 by Hurwitz and for evely by Nakada. These continued fractions
are generated by interval mafgrespectivelyfy which are conjugate to
subshifts over infinite alphabets. We generalize to antyitnea result of
Hurwitz concerning th&,- and fg-equivalence of points on the real line.
The natural extension of the mafisand f; can be used as a Poincaré
map for the geodesic flow on the Hecke surfaGg§H and allows to
construct the transfer operator for this flow.
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1. Introduction

In the transfer operator approach to Selberg’s zeta-fandor Fuch-
sian groupss [12], [17] this functions is expressed through the Fredholm-
determinant of the generalized Perron-Frobenius opegidor the geo-
desic flow on the corresponding surfd&eHt of constant negative curvature.
This operator is constructed through an expanding intenag f: | — |
closely related to a Poincaré map of the flow. In all the caszded up to
now this interval map generates some kind of continueditma&xpansion
like the Gauss expansion or its extensions such that théhepgctrum of
the flow can be completely characterized by the periodid®eddif respec-
tively the purely periodic continued fraction expansionkis program has
been carried out in full detail for the modular surfade$ H defined by
subgroups” c PSL(2, Z) of the full modular group.

For these groups the transfer operator has another rathertamt prop-
erty: its eigenfunctions with eigenvalue 1 can be directiated to their
automorphic forms, that is real analytic Eisenstein seaie Maass wave
forms respectively the holomorphic modular forms. Thistieh gave rise
to the theory of periodic functions. (], [2] which generalize the Eichler-
Manin-Shimura cohomology theory for holomorphic modutzmnfis.

The physical interpretation of these relations betweertrénesfer op-
erator and the spectral properties of the Laplacian forettggsupsG is
within the theory of quantum chaosd], [19]: the transfer operator en-
codes the classical length spectrum of the geodesic flow elates these
data to the quantum data, namely eigenvalues and eigerdnsgespec-
tively resonances of its quantized system. In this sensdridusfer opera-
tor approach extends the more common approach to quanturs tlaathe
Selberg-Gutzwiller trace formula ] Theorem 13.8, p. 209];L[].

Obviously it is necessary to work out the transfer operaionfore gen-
eral Fuchsian groups, especially non-arithmetic onesyfoch the Hecke
triangle group$s, are good examples, since up to the capes3, 4, 6 all of
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NEAREST A4-MULTIPLE FRACTIONS 3

them are indeed non-arithmetic. 14 the authors constructed a symbolic
dynamics for the geodesic flow on the Hecke surfaegg for arbitrary

g, the casey = 3 was treated earlier ir?]. In both cases the authors used
the nearest,-multiple continued fraction expansion, denoted for sgrt
A4-CF, and their dual expansion. Another approach was disduaiso in
[20]. Some of the ergodic properties of thegeCF’s for g even have been
worked out in [L5] by H. Nakada. In the present paper we discussithe
CF’s and their duals for arbitraxyvia their generating interval maggand
f4, which allow us to derive also a transfer operator for thekeecdangle
groupsGy, whose Fredholm determinant is closely related to the $glbe
function for the group$, as we will discuss in a forthcoming paper.

In [8] Hurwitz introduced nearest integer continued fractiopansions
of the form

(1.1) ag+———
a + _71
1

ag+ -

ax+

whereay is an arbitrary integer and the, i > 1, are integers satisfying
lajl > 2 anda; a;,1 < 0 if |[aj| = 2. They are generated by the interval map

-1 /-1
f3:|3—>|3; XI—)——<—>,

X X
wherel; = [—% %] and(x) denotes the nearest integerxoby the usual
algorithm:

(0) ap = (x) andx; := X — &y,
(1) ar = (5) andx; 1= 3t —ar = f3(x),
(i) & = (32) andx,1 == 3 - & = fa(x).

(%) The algorithm terminates ¥, = 0.

Let PSL(2,Z) = SL(2,Z) mod{+1} denote the the full modular group.
Elements of the group can be identified withk2-matrices with integer
entries and determinant 1, up to a common sign. The groupoacthe
projective real lineR U {co} by Mobius transformationf §)z = &2, The
group PSI(2,Z) is generated by the elemerfisand T corresponding to
the actionsz — = andz — z+ 1. The generators satisfy the relations
S? = (ST)® = 1. In particular, the elemenf§? andS T? correspond to
the actionsz — z+ aandz — ;le Hence we can write the continued
fraction expansion inl(.1) in terms of a (formal) Mobius transformation as
ToST2STR2ST® ... 0.

Hurwitz found in B], that equivalence of two points,y € R under
the generating mayb is not the same as equivalence under the group ac-
tion of PSL(2,7Z). This is obviously in contrast with the case of the Gauss
map fg: [0,1] — [0,1] with fg(x) = = mod 1 and the modular group
PSL(2,7).
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4 D. MAYER AND T. MUHLENBRUCH

In [15 Nakada introduced for even integes > 4 the nearesfl,-
multiple continued fractions witil; = 2 cos?, which we will denote by
A4-CF’s. They are similar to the Rosen contined fractionsoufticed in
[21] and discussed in detail in]. The extension to the case> 3 odd is
straightforward, wherg = 3 corresponds to the nearest integer continued
fractions of Hurwitz. Thesa,-CF’s and their dual expansions, introduced
for g = 3 also by Hurwitz, can be generated by interval mépand f;
closely related to the Hecke triangle groups Both maps are conjugate
to subshifts over infinite alphabets, which when reducedettam sofic
systems, determine completely the properties of the qooreting,-CF
and its dual expansion. It turns out, that Hurwitz’s resulieguivalence of
points on the real axis unddg and the group action of P$2 Z) is true
for generalq > 3: there exists for everg > 3 exactly one pair of points
(rg, —rq) Which are equivalent undés, but not under the mafy. The nat-
ural extensiorf of the interval magfy: I — |4 can be easily constructed
from the symbolic dynamics of the mafisand f; as sofic systems. It can
be used to construct a Poincare section for the geodesic fidiveoHecke
surfaceG4\H, and hence also a transfer operator for the grGy@nd its
Selberg zeta function. The properties of this operator bélldiscussed
elsewere.

The structure of this article is as follows: In Sectidrwe introduce
the Hecke triangle groups and thig-CF’s respectively the dualy-CF’s.
In Section3 we discuss the interval magfg and f;* generating the near-
estA-multiple continued fractions and construct Markov paotis for these
maps. In Sectiod we show that the mapf, and f;* are conjugate to sub-
shifts over infinite alphabets and introduce sofic systemsety related to
the 14-CF and its dual. This allows a simple construction of theuradt
extensionF, of the mapf,. In Section5 we relate the natural extension
Fq to the geodesic flow on the Hecke surfa8H and derive the trans-
fer operator for this flow. The final Sectidhcontains a discussion of the
convergence properties of thg-CF's by relating them to reduced Rosen
A-fractions as discussed ifA]].

2. Nearestig-multiple continued fractions

2.1. Hecke triangle groups.Hecke triangle groups are Fuchsian
groups of the first kind, all except three are non-arithmefld®ie reader
may wish to consultd, pp. 591, 627] for a discussion of Hecke triangle
groups and their relation to Dirichlet series.

Denote by PS(2, R) the projective special linear group given by

(2.1.1) PSI2,R) = SL(2,R)/ {+1}
+1 O ab a b\ (-a -b
where+1 = ( 0 il). We denote b{c dl = {(c d)’(—c —d)} the el-

ements of PS(2, R), but identify often elements of P$2, R) and SL(2, R).
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NEAREST A4-MULTIPLE FRACTIONS 5

For a given integeq > 3 theq" Hecke triangle group Gis generated
by

|0 -1 |1 2q
(2.1.2) S = [1 0 and Ty _[O 1]
with relations
(2.1.3) s?=(sT)' =1,

where/q is given by

(2.1.4) Ag = ZCOS(E)
q
Lateron we also need the element

’ . 10 1
(2.1.5) Ty [/lq 1] ST, S eGy
We may suppress thepdependence in our notation when we work with a
fixed value ofg.
The Hecke triangle grou@, is a discrete subgroup of P&, R) and its
limit set is the projective lin@; = R U {co}. It acts on the upper half-plane,
the lower half-plane and ar by Mobius transformations

AH

The pointsx,y € Pi are Gg-equivalentdenoted byx ~c, ¥, if there
exists an elemeny € G, such thay = g x. Obviously, this is an equivalence
relation.

ab
c d

ab
d

cx+d

a

1 1.
(2.1.6) Gq x PE - B; ( & if x= oo

. {a—b if x € R and

2.2. Nearesti,-multiple continued fractions and their duals. Con-
sider finite or infinite sequencés;),. We denote periodic parts of the se-
guences by overlining the period part and finitely repeatdtems are de-
noted by a power where &'@ower vanishes:

(a1, a2, @3) = (ay, ap, as, &, a3, &, a3, ... ),

(a1, (32, @), 4, ...) = (a1, 82,83, 3, @, . .., Bp, B3, 4, ...) and

itimesap,ag
(a1, (@)% ag,...) = (a, as,...).

We use alse-(ay,...) =(—a,...).
Put

-2

Ke]

for g even and
for g odd.

1 N

3

Ke]
N

(2.2.1) hy = {
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6 D. MAYER AND T. MUHLENBRUCH

We define the seB, of forbidden blockss

{(£ DU Uneaf(+ 2, £m)} forq=3,
_ JHED ) U Uneal((22)5, =)} for g even and
222 Ba=\ ey,

UUR_ (1), +2, (+1), +m)}  for q odd,q > 5.

The choice of the sign is the same within each block. For exa@p3),
(-2,-3)e Band(2,-3) ¢ Bforq=3.

We call a sequencéay, a, as, ...) q-regularif (a,ay1,....,a.) ¢ By
forall 1 < | < L anddual g-regularif (a.,a,_1,...,a) ¢ By forall 1 <
| < L. Denote byAc? respectively byA™ the set of infiniteg-regular
respectively duad|-regular sequences;ficy.

A nearesti-multiple continued fractionor 14-CF, is a formal expan-
sion of the type

-1
(2.2.3) [0; &1, @, 83, .. ] 1= @odq + =
al/lq +

-1
adq+ agdq+...

with a; € Zo, 1 > 1 andag € Z.

We say that §; a3, a,, a3, . . .| convergesf either [ag; a;,ap,a3,...] =
[ag; a1, @, @s, ..., a ] has finite length or lim..[ap; a1, &, a3, ...,a.] ex-
ists inR.

We adopt the same notations as introduced for sequencesr.e&ibr
example we write do; a1, @, az] for a periodic tail of the expansion and
—[ag; &y, ...] for [-ag; —ay, .. ].

A A4-CF is regular respectively dual regular if the sequence
(a, a0, as,...) is g-regular respectively dual-regular. Regular and dual
regulariy-CF's are denoted byef; ay, . . .] respectively fo; as, .. .]*.

ProposiTion 2.2.1. Regular and dual regulai,-CF’s converge.

Proor. The proposition follows immediately from Lemmas 4 and 34 in
[14]. O

An alternative proof of Propositio.2.1 for infinite regular and dual
regular expansions with leading O follows also from the leasnm the Sec-
tions4.2and4.4.

Convergingl,-CF’s can be rewritten in terms of elements of the Hecke
triangle groupGy: if the expansionZ.1.9 is finite it can be written as fol-
lows

[a01 ala a29 a39 RN aL] = aO/lq + -1

(2.2.4) = T2STuSTRSTE ... ST Q,
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sincem‘ql+X = ST x. For infinite convergingl,-CF the expansion has to be

interpreted as

[ao; a1, @, @s, - - .]

lim [a0; &1, 8, &g, . .., & ]
lim T* ST ST ST® ... ST 0

=T®STEST2ST® ... 0.
An immediate consequence of this is

Lemma 2.2.2. For a finite regulari,-CF one finds for g even

[20; a1, .. .. a0 (1)] = [a0;as. ..., 80— 1, (-1)"]
respectively for q odd

[a; ... & ()2, ()T = [a0; ..., a0 — L, (1), -2, (-1).

Proor. Assume the left hand side to be regular. This impdieg 1 and
hence the right hand side is regular, too. Conversely, assheright hand
side to be regular and henag— 1 # —1. Therefore the expansions on the
left hand side are regular.

The identity now follows by writingl,-CF’s in terms of Mobius trans-
formations and using the identitgMM™ 0 = T1(STHNW STIS 0 =
T1(STY)% 0since 0 is a fixed point B TS = T". u

Remark 2.2.3. Forq = 3 the nearesti;-multiple continued fractions
are in fact the well-known nearest integer fractions exteg discussed
by Hurwitz in [8]. In particular, Theoren2.1.2for q = 3 was proved by
him there. We include his results for the sake of completeaad to show
how this special casg = 3 fits well into the discussion of the case of odd
g > 5. See also Remaik 3.2

Remark 2.2.4. Forq > 4 the regulari,-CF’s correspond to Rosen’s
Ag-fractions introduced inq1] and discussed inl]. We will discuss this
relation in more detail ig5.1

2.3. Special values and their expansionsThe following results are
shown in [L4]:
The pointx = :J—Z“ has the regulat,-CF

(23.1) g [[0; (x21)] for evenqg and
3. Fo-=
2 |[0; (1), +2, (+1)] for odd q.
Put
Ry :=Aq+Trq with
(2.3.2) [0; 3] for q =3,
o rq :=14[0; (1)W1, 2] for g even and

[0; (1), 2, (1)"1,2] for godd,q> 5.
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8 D. MAYER AND T. MUHLENBRUCH

whose expansion is periodic of lengthwith

2

_ a2
(2.3.3) Kq = hg = for evenq and
2hs+1=q-2 foroddg,

The regular respectively dual regularCF of the poinx = R, has the form
(2.3.4)

[1; (1)W1, 2] for evengq,
Ry =14 [1; (D), 2, (1)1, 2] foroddq > 5 and

[1;3] forg=3.

[0; (-1)", -2, (-1)r-1]* for evena,
(2.3.5)  =<[0; (-1)", -2, (-1)w, =2, (=L)ha-1]* for oddqg > 5 and

[0; -2, -3]* forg=3.
Moreover,
(23.6) Ry=1 and -R;=SR for eveng and

(23.7) R+(2-1)Ry=1 and -Ry= (TSR, foroddg

andR, satisfies the inequality

/lq
(2.3.8) > <Ry <1l
Remark 2.3.1. ForR; one finds
1
1+Rs = 2%.

Remark 2.3.2. The form of thely-CF of r3 in (2.3.2 can be obtained
from the expansions fay odd, g > 5 by interpreting it as a Mobius trans-
formation with (1) asST:

rs = [0; 1,2, (1)1, 2] = [0; 2, (1)1, 2]
=ST°ST!ST?- ST°ST!ST? --- 0
=STPTSTSST. STPTSTSST--- 0
=ST°ST - ST°ST --- 0=[0; 3].
2.4. A lexiographic order. Letx,y € Ir := [—Rq, Rq] have the regular
Ag-CF'sx = [ag; a1,...J andy = [by; by, ...]. Denote byl(X) < oo respec-
tively I(y) < oo the number of entries in the aboxgCF's. We introduce a

lexiographic order‘ <" for 1,-CF’s in the following way: Fon € Z.4 being
the number of equal digits at the head of theCF’s, i.e.,a; = b for alll
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0 <i < nandl(x),l(y) = n, we define

(2.4.2)
o < bo if n=0,
a, >0>Db, ifn>0,bothl(x),l(y) >n+1anda,b, <0,
X<Yy:& qa,<by if n> 0, bothl(x),l(y) > n+ 1 anda,b, > O,
b, <0 if n>0andl(x) =nor
a,>0 if n> 0 andl(y) = n.

We also writex <y for x<yorx=y.
This is indeed an order on reguldy-CF’s, since Lemmas 22 and 23 in
[14] imply:

Lemma 2.4.1. Let x and y have regulat,-CF’s. Then x< y if and only
if x <y.

The authors of [4] introduce a process called “rewriting” af,-CF's
where forbidden blocks in thé,-CF are replaced by allowed ones without
changing its value. The rules for “rewriting” are based amititerpretation
of a 14-CF in terms of Mobius transformations given by group elata®f
the Hecke group, se@ .4, and applying the group identitieg.(.3. We
refer in particular to Lemma 11 and Lemma 13 ir] for the details. A
simple example for this rewriting is used in the proof of Lean®2.2

It follows from the proof of Lemma 34 inl}4] that every dual regular
A4-CF can be rewritten into a regulag-CF.

Lemma 2.4.2. The lexiographic ordex in (2.4.1) can be extended to
dual regular14-CF’s with leading digit0. Rewriting two dual regulan-
CF’s satisfying[0; &, ...]* < [0; by,...]* into regular 1,-CF’s does not
change their order.

Remark 2.4.3. The lexiographic order < ” however cannot be de-
fined for all dual regulanCF’s with arbitrary leading cd&cient as the fol-
lowing example shows: consider the dual regulgiCF’s of R; in (2.3.9
and @.3.95. ObviouslyR = [0; —2,-3]* = [1;3]*. Extending naively
“<"in (2.4.1) to this case would lead to [6:2, —3]* < [1; 3]* and hence
[0; -2, -3]* < [0; -2, -3]*.

Proor oF LEmma 2.4.2 The 4-CF’s [0;ay,...]* and [O;by,...]* are
dual regular. No rewriting is necessary if both are also laagu
Assume [0y, by, .. .]* starts with a forbidden block. If itis of the form

[0; (1)"s, m]* for evenq,
[0; by, by, .. J* =<[0; (1), 2, (1),m]*  foroddq> 5 and
[0; 2, m]* forq=3
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with m > 2 for q > 4 respectivelyn > 3 for q = 3, then [O;ay, @, ...]*
must be of the form

[0; (1), n]* for eveng,
[0; &, @, ... 1% =4[0; (1), 2,(1)s,n]*  foroddq>5and
[0;2,n]* forq=3

with n < mandn > 2 for q > 4 respectivelyn > 3 for g = 3. Using the
rewriting rules in Lemmas 11 and 13 ih4] we find

|[0, di, do, .. .]I*—> |[~ao, él, az, .. ]I

[-1; (D)%, n-1,..] for evengq,
=3{[-1; (-1, -2, (-1)a,n-1,...] foroddqg>5,
[-1;,-2n-1,..] for g=3 and
respectively
[0; by, by, .. .]*— [bo; b1, by, .. ]
[-1; (1) m-1,..] for evengq,
={[-1; (-1, -2, (-1)s,m-1,..] foroddq=>5,
[-1,-2m-1,..] forq=3

hence by2.4.7) [-1;8:, 8,...] < [-1;b1,b,.. ]
If [O; by, by, bs,...]* is of the form

(2.4.2)
[0; (-1)", —m,.. ]* for evenq,
[0; by, by, .. .]* =< [0; (-1)%, -2, (1), —m,...]* foroddq> 5,
[0; (-2,-m),..]* forg=3

with m > 2 for g > 4 respectivelyn > 3 forq = 3, and [O;a;, @, .. .]*
does not contain a forbidden block starting wath the rewriting rules in
[14] give

|[0, b]_, b2, .. .]I* — |[50, Bl, 62, .. ]I

[1; (D), 1-m,..] for evenq,
= {[1;@)M,2,A)e,1-m,..] foroddqg>5,
[1;2,1-m,..] for q = 3.

Therefore 2.4.1) implies [0;a4, @, ...J* < [1; b, b, .. ].
If [O; by, by, bs,...]* is of the form @.4.2 and [0;ay, a,, .. .] * is of the
form

[0; (1), —n]* for evenq,
[0; a1, @z, ...]* = 3[0; (=1), 2, (1), —n] * for oddq > 5 and
[0;2,—n]* forq=3
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with n > mthen the rewriting rules inl{] lead to

[1; (D)% 1-n,..] for eveng,
[1;3,8,,...] ={[1; ()", 2,(1),1-n,..] foroddqg> 5,

[1;2,1-n,..] for q = 3,

[1; (D)% 1-m,..] for eveng,
[1; b, b, ...] ={[1; ()%, 2, (), 1-m,..] foroddqz=>5,

[1;2,1-m,...] for q = 3,

and hence [1a7, &, ...] < [1; by, by,.. ]

Completely analogous are the cases whera]Q;. .]* with a forbidden
block or the first forbidden block startsat, n > 1 and [O;by, by, ...]* is
a regulariy-CF. If both [0;a, ...]* and [O;by, . ..]* have the same forbid-
den block starting ad; respectivelyb, then both dual regulat,-CF’s are
rewritten in the same way and the forbidden block does natenite the
order <”. O

2.5. Equivalence relations and continued fractionsLet x,y € R
have infinite regulany-CF's x = [ag;a1,...] andy = [bo;by,...]. We
say thatx andy areregular A,-CF-equivalentdenoted byx ~q Y, if the
regulari,-CF’s of x andy have the same talil, i.e., there existn € N such
that the sequencesay, am.1, . ..) and @, by, 1, ...) coincide. Obviously, this
is an equivalence relation. We can extend this equivaleglegion to all
regulari4-CF’s by declaring all finite regulat,-CF’s to be regulan,-CF-
equivalent.

Tueorem 2.5.1 (Equivalence relationsffor x, y € R the following prop-
erties are equivalent:

(1) X~g, Y-
(2) x and y satisfy:
® X ~regy Ol
L] X "‘reg ir and y"‘reg ¢r.
To prove the proposition, we need the following lemmas:

Lemma 2.5.2. If X has an infinite regulanl,-CF and g e G satisfies
gx € R, then g x has an infinitd4-CF with at most k consecutive digits
+1. Its tail coincides with the tail of the regulax,-CF of x.

Proor. "' Let x have the regulat,-CF x = [ao; &y, ...]. We can writeg Change -1
as a word in the generatoBandT,: g = T ST STe? -~ STom S with
bo € Z, b € Z,o,i =1,...,m andé € {0,1}. Theng x can formally be
written asg x = TR ST ST ... ST SO T STAST® ... 0,

Consider fom > msuficiently large the elemem, € G, given by

(25.1) G :=TPSTHSTY - ST"S’ TPSTESTE --- ST € G
1Beweis leicht umformuliert.
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eveng: (m=> 1)

i[ai—ls m5 2’ 1hq71’ m] - i[aifl - 1’ (_1)hq71’ (1)hq’ m]
+[a_1, 17,2, 1%L m] — +[a_1—1,(-1)%, 1% m]
oddg>5: (m=> 2)

i[ai—l» E» 2, 1hq] - i[ai—l -1, (_1)hq7 m]

+[a_g, 1t 2 101 2 1M m) — +[ai_1—1,(~1)%, 1M, 2 1N m]
+[a_1, 1,2, 1M, 2, 1M] — +[a_1—1,(-1)%, -2, (=1)", 1N+
+[ai_1,1M,2,1M, 2,101 2 1% m] —  +[a_q — 1, (—1)%, -2, (=1)%, 1M, 2, 1N m]
g=3:(m>3andn>0)

+[a_1,2,3,m] - #[a-1-1,-2,2,m]|
+[a1,2,2,2",3,m| - #lai-1,-(3+n).2m

TasLe 1. Under assumptions of Lemrégb.3we list all pos-
sibilities where the rewriting of a forbidden block genesat
a new forbidden block. The forbidden blocks are underlined.

The identitiesS? = 1, (S'I'(';l)q =1, T? (S-Gﬂ)q‘l STo = T and

Te(STAST) = 7o (STY)" " sTetforhg+1<1 < g-2andab
arbitrary follow from .1.3. Butq-1-2<q-(hg+1)-2=hy—1forq
even andj—|-2 < hy for g odd. We apply these identities recursivelygin
in (2.5.1). After a finite number of steps one arrives at a word reprasgn
gn Which contains blocks of at mokj consecutive digits1. Indeed, since
each application of one of these identities reduces thetheoigthe word,
the process of applying the identities has to stop after gefmumber of
steps. And, since th&,-CF of x is reduced, there are no blocks of more
thanh, consecutiver1 to the right of the right of partS Tom S° T S Ta”
of the wordg, in (2.5.1).

Henceg x can be written as a4-CF of the form 2.2.4 without blocks
of more tharh, consecutive digits:1 and with a tail identical to the regular
tail in the 14,-CF of x. O

Lemma 2.5.3.7% Let[ag; ay, @, . . . | be an infinitedq-CF containing no
blocks of more thandw+ 1 consecutive digits:1 and at most one block of
hy + 1 consecutive digits1 for q > 4 respectively no forbidden digitsl
for g = 3. If the block{(+1)"*!] exists the block has to be the first forbidden
block of thet,-CF and has to be preceded by a digit of alternate sign.

If the first forbidden block starts at,a > 1 and its rewriting leads to
a new forbidden block then this forbidden block and its r&en version
must have the form given in Takle The new forbidden block will appear
to the right of & If the new forbidden block is of the forjti-1)"%+*] then
its preceding digit is negative.

Proor. W.l.0.g. assume, the forbidden block startingaahas positive

digits and hence,_; # 1. Forg even the forbidden block must have the

2| emma leicht umformuliert
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NEAREST A4-MULTIPLE FRACTIONS 13

form [1M*1] or [1"e, m] with m > 2. The rewriting rules in Lemma 11 of

[14] lead to
[ cees Ain1, lhq+l’ ai+hq+l’ .. ] - [ O T 1’ (_1)hq—l’ ai+hq+l - 1’ .. ] and
[- -5 i1, 1hq’ m, ai+hq+l’ .. ] - [ s, 81 — 1’ (_1)hq’ m- 1’ ai+hq+l’ .. ]

form> 2. Changing;_; to a_;—1 cannot introduce a forbidden block since

a1 # 1 and a digitg;_; > 2 cannot follow a block of the frorfil™]. Hence
any new forbidden block has to start with the digit, .1 — 1 respectively
m- 1. Two cases are possiblggn:1....] = [2, 1= 1, .. ] respectively
[m...] = [2,1% L 1,.. ] with | > 1. This shows that the blodk;, ... ]
must have the fornj1"a*1, 2, 1%~ |] respectively[1, 2, 1= 1] with its
rewriting leading to the form as stated in the lemma.

For g odd, g > 5, the forbidden blockd,...] has either the form
[1Ma, 2, 1M, m] with m > 2 or the form[1"*1]. Rewriting rules in Lemma 13

of [14] then give
[ ey ai—l7 lhq+l’ ai+hq+l’ .. ] - [ s ai—l - 1’ (_1)hq’ ai+hq+l - l’ .. ] and
["'9ai—l91hq5251hqam"']_)["'aai—l_19(_1)hq5_29(_1)hq5m_19"']

form > 2, and similar arguments as fgeven show that the forbidden block

and the digits following it are either of the forft"a*1] followed by[2, 1]
or[2,1%"1 2 1M 1], 1 > 2, or[1M, 2, 1", 2] followed by [1M] respectively

[17=1 2,1 1], 1 > 2. The rewritten form is the as given in the lemma. For

a_1 = 2 rewriting cannot lead to a new forbidden block to the leftapf

contradicting otherwise the first forbidden block to staittwva;.

The casey = 3 with forbidden bloc2,2", m|, m > 2 andn € Z, can
be handled in complete analogy by using the rewriting fal&, 2",b] —
[a-1,-2-n,b-1]witha b+ 2. O

Proor or ProposiTion 2.5.1 We show first the implication (2» (1). If
X ~reg Y thenx andy have regulan,-CF's with the same tail:
X= [ao;al,---,am,am+l,---]| andy: |[b0s bl,---,bn,am+l,---]|-

Putg:=T*ST™ ... S'I'f"m(Tbo ST ... S'I'b")_l € Gy. Writing x andy in
terms of Mobius transformations as explainedar2(4 we find,
gy = gT®ST®...STHSTem1 ... Q
= ToSTA...STenSTeml ... Q=X
and hencex andy areGq-equivalent ™.

Assume nexik ~pg I andy ~g —I and hencex ~Gq I andy ~Gy —T-
SinceRy = Tqrq according to 2.3.2 and-R; = SR, according to 2.3.9
for evenq respectively-R, = (Tq)"*'R, according to 2.3.7) for odd q
obviouslyr ~g, —r and hence ~g, Y.

“3Formelnummer der Formelzeile entfernt.
““Formelzeile weggelassen, da sie unsinnig ist.
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14 D. MAYER AND T. MUHLENBRUCH

To show implication (1)= (2), assume there exisgss G, with g x=y
Change -5 with x andy having infinite ® °regulari,-CF’s. Lemma2.5.2shows that
Remark -6 g x can be written as an infinité,-CF with regular tail satisfying the as-

sumptions of Lemma.5.3 Using the rewriting rules in Lemmas 11 and 13
of [14] we can recursively rewrite th@,-CF of g x into a regulari,-CF
from the left to the right. We procede to the next forbiddewmchlif rewrit-
ing does not lead to a new forbidden block. Lem#a 3implies that a new
forbidden block can only appear to the right of the originaé avhich we
process next. If this rewriting process stops after finitagny steps then
y = g xandx have the same tail in thei-CF’s andX ~eq Y.

Hence assume, the rewriting process has to be repeatedsangbaigain.
Then after a stliciently large but finite number of rewriting steps one ar-
rives at the situation where thig-CF of g xis regular up to one forbidden
block. Denote thisy-CF by [ao; &y, . . .] with the remaining forbidden block
starting at digi, i > 1 and assume w.l.0.g. the forbidden block has positive
digits.

Consider first the case even: By Lemma2.5.3the forbidden block
and the following digits have the forna[...] = [Bo, By, By, ...] with the
block By € {[1hq+1, 2], [1hq,2]} and the blocksB; € {[1hq,2], [1ha-1, 2]}, for
all j > 1. Since by assumptidB, was the last forbidden block in thig-CF,
necessarilyB; # [1, 2]. Hence thel,-CF ofg x has the form

gx=[agay,...,a.1,1,2, 11 2] withl=hg,hy+1

where the forbidden block at digé is underlined, and whose tail, deter-
mining also the tail o, is regulari,-CF-equivalent ta,. After infinitely
many further rewritings one arrives at the regulgiCF of y whose tail is
regulari,-CF-equivalent te-ry.

Consider next the casp> 5 odd: Lemma2.5.3again determines the
form of the forbidden block and the following digits as

[a, .. ] = [Bo, Bl, Bz, .. ]
with the blockBy € {[1%+2, 2], [1", 2, 1%, 2]} and the blocks
B € {A = [1M,2] Ay = [0, 2.1% 2}, j>1

Since the blockgA;, As] and[ A, A ] are forbidden blocks, necessarBy =
A, for all j > 2, since otherwis8, would not be the last forbidden block in
the 14-CF of g x. Hence thel,-CF of g x has the form

gx=[ao;ay, ..., 1, B, By, 11, 2,1, 2]

where the forbidden block at digat is again underlined. As in the previous
case, we find is regulariq-CF-equivalent tag andy is regulari,-CF-
equivalent to-ry.

“Infinite” hinzugefgt.
-6wie beweise ich den Fall der endlichARCF’s?
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NEAREST A4-MULTIPLE FRACTIONS 15

Consider finally the casg = 3: Lemmaz2.5.3gives again the form of
the forbidden block and the following digits a&,[...] = [Bo, By, ...] with
Bo = [2,2",3], n> 0, and the block8; € {[2],[3]}, j > 1. Since the blocks
[2,2] and [2 3] are forbidden, necessariB; = [3] for all j > 1. Thea,-CF
of g xhence has the form

gX: [ao; al?"'?ai—l’2’2n33’§]

where the forbidden block at digg is underlined. Agairx is regulariy-
CF-equivalent to, andy is regulariy-CF-equivalent to-ry,.
O

3. Generating maps for thed,-continued fractions and their duals

Similar to the Gauss continued fractions alsoth&ontinued fractions
and their duals, which fogq = 3 have been introduced by Hurwitz if]]
can be generated by interval maps with strong ergodic ptiegdike in the
case of the Gauss maps.

3.1. The interval maps f, and fy. Denote byl respectivelylg, the
intervals

(3.1.1) lq = [—% %] respectively Ig, = [—Rq, Rq]

with 4q as in .1.4 andR, = 14 + rq as in €.3.2. Thenearesti,-multiple
map(-)q is given by

(3.1.2) (Vg R—>Z; X (g = F + 3|
Aq 2
where|-] is the (modified) floor function
(3.1.3) IX|=n e n<x<n+1 !fx>0and
n<x<n+1 if x<O.

We also need the mapy; given by

) . [%+1—%J if x> 0and
(3.14) (N:IR-Z x> (X)) = EFIn if x <0
Ag Ag '

The interval mapdy: 1q — Iqandfy: Ig, — Ig, are defined as follows:

_1_<—_1> 1 if X € 14\{0}

3.1.5 fax) =4 * \*/a™d -

( ) q(X) {0 if x=0and
_1_(=1\) if y € I, \{O},

3.1.6 TN e -

( ) MY {0 ify=0.
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16 D. MAYER AND T. MUHLENBRUCH

3.2. 14-CF’s and their generating interval maps. The mapsf, and
fy generate the regular respectively dual regulp€F's in the following
sense:

For givenx,y € R the codficientsa, andb,, i € Z.o are determined by
the following algorithms:

(0) ap = (X)qg andxy := X — adq € lg,
(1) a; = (-—1>q andx; 1= 3 — aydq = fo(xe) € I,

(i) & = (3), andx. 1= 3 —aidg = fo(x) € I,
(%) The algorithm terminates ¥,; = 0
and
(0) by = (x)q andy; :=y - bodq € Ig,,
(1) by = (52), andys := 52 - budg = T3 () € I,

(i) b= (3}), andyia = § = bidg = () € I,

(%) The algorithm terminates if,; = O.
By construction the cdicients formi,-CF’s in the sense of2(2.3:

(3.2.1) X=[ag;ag,a,...] and y=[bg; by, by,...].

ProposiTion 3.2.1. The 14-CF of x in (3.2.]) is unique for all x not
in Unso fq‘”(iig) and regular whereas the one of y is unique for aliy

U;‘;O(fq*)_n (+ry) and dual regular.

Proor. A simple calculation shows that the regularCF of all points

X = m = 2,3,... and their preimages is not unique. But these

2
i2m—l)/lq’
points belong to the preimages of the poiﬁ€l§ On the other hand the dual
A4-CF of the pointyy = irqjmq, m = 1,2,... and their preimages is not
unique. But these points are all the preimages of the peints m|

Remark 3.2.2. The non-uniqueness of certain finite regulaCF’s in
Lemma2.2.2can also be derived from Propositi8@r. 1

3.3. Markov partitions for fqand fy. Obviouslyfq is locally expand-

ing, that meansf;(x)| > 1 for all x € |, if one takes the one-sided deriva-
tives at the points of discontinuity. The same holds truetiermapfy for

qodd. Forgevenf'(+Ry) = 1 but’(fq*z)' (y)‘ > 1forally € I, and hence

both mapsfq andf; are locally smooth, expanding maps. Indeed both maps
have the Markov property, that means that they allow for Magartitions.

To construct these partitions we use the orbits of the bayrutzints of the

two intervalsly andlg, respectively the monotonicity intervals of the maps
fqandfy.
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NEAREST A4-MULTIPLE FRACTIONS 17

Define the orbit of underf, respectivelyf; as

(3.3.1) orbit (x) = {x, fo(X). 203 = fo(f(¥). 13(x). .. ]
= {fq”(x); n=0,1, 2} respectively
(3.3.2) orbit* (x) = {(f7) (0: n=0.1,2....}.

The orbits orbi(—”—z“) and orbit (—Rq) are both finite. I1#{S} denotes the
cardinality of the se§, we have

ﬂorbit(—%) = orbit* (—Rq) =Kkq+ 1,

as can be seen from the regukarCF of —%q in (2.3.7) and the dual reg-
ular 1,-CF of —R; in (2.3.9. We denote the elements of orbhig) by &
respectively of orbi‘t(—Rq) by i, 1 =0,...,kq such that

(3.3.3)
A
_Rq:_¢0<_3q:¢0<¢1<¢1<lﬂ2<¢2<...

1
con <2 < Pug2 < W1 < Puge1 = T <Yy <Py =0
q

holds. By using the regula,-CF of—A—zq and the dual regular1,-CF of R,
respectively the order<” in §2.4one easily verifies

Lemma 3.3.1. The order in(3.3.3 is achieved for g even by defining
A i .
(33.4) ¢ =1 (—E“) and yi=(fy) (-Ry). 0<is<h=x,
respectively for g odd by defining

(3.3.5)
A . A
¢ai = fy (—Eq), $aiv1 = fqh“+l (_Eq) and
i h+i+1 . Kg— 1
va=(1) (R).  vaa=(f) (R). 0sishy==~.
In the case) = 3 one haks = 1 andhs = 0. Therefore
1 1-+5 V5-3
¢0 = _Ea ¢1 = Oa WO = _R3 = 2 andwl = R3 - 1 = 2 :
Define nextp_j = —¢i, 0 < i < kg, respectivelyy_; = —y; for0 < i <

Kq + 1 W.ith wkq+l = p.
Obviously the intervals

(3.3.6) O; = [¢i_1, 4] and D = [¢_i, 1)) 1<i<kq
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18 D. MAYER AND T. MUHLENBRUCH

respectively
(3.3.7) Vi = [Yi,yi] and W= [yl vl

1 < i < kq+ 1, define Markov partitions of the intervalg and Ig,: this
means that

Kq
U J®a=1g, @;n@5=0 for &+
e=+,— i=1
Kq+1
U JWi=tr, Wonw; =0 for ai#sj
e=+,— i=1
whereS° denotes the interior of the s&t To get a reasonable symbolic
dynamics for the two map#, and f; we have to construct finer partitions
using the monotonicity intervals of the two maps. Considet the case

g = 3 such thatl; = 1. Define form= 2, 3,4, ... the intervals],, as
(3.3.8)
2 2

1 2
JZ_[_E’_E and Jm_[_Zm—l’_2m+1 y M=34...,
and setl_, = -Jnform = 2,3,4,.... Sincef;(Jp) = TL[O,%] and

f3(Jim) = Iz form= 3,4,... the partition satisfies

U [JIm=1s and 3n3i=0 for em=ok

e=+,— m=2
Hence this partition, which we denote (fs), is Markovian. The maps
fs|, are monotone withfs|, (X) = —% — m and locally invertible with

-1
(faf, ) ) = —5% fory € fo(In).
Forqg > 4 define intervald,,, m=1,2,..., as

A 2
Jh=|-2,-=| and
2 3l
(3.3.9
Im = 2 2 m=2,3
Tl @m-1)2y @m+1ngT 0 T
and setl_,, := -J, for me N. For evernqg, g > 4, the points in orbi@—i;)

do not fall onto a boundary point of any of the intervadlgs m € N. Indeed

from the regulan,-CF of—%q in (2.3.]) and the order<” in §2.40ne sees
easily that

2
:¢0<¢1<...<¢Kq_1<——<¢Kq:O

q
2 31

with ¢; = fi (—%‘*) If we hence define the intervals,, as
(3.3.10) Jeg, =JdaN®, fore=+,—-, 1<i<kq
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NEAREST A4-MULTIPLE FRACTIONS 19

and thereforel,;;, = @, for 1 < i < kg — 1 we get the partitionM(fy),
defined as

(3.3.11) = (U Jeg, U UJsm],

e=+,— \i=1

which is obviously again Markovian, since

fq(Jali):JalHl’ 8:+,_,i:1,...,Kq_2,
fo(etg ) = de, U | Jdm e=+- and
m=2

A
fo(Jex) = & [O, Eq] e=+,— respectively

fo(Jem) = lgs &=+, -, m=23,....

The mapsfq|J are monotone increasing Withl|J (xX) = —)—1( - mly and

(fq|Jm)_1 V) =~y form= £1,+2,+3,.

Consider next the cagpodd,q > 5. In this case one has, using again
the regulan,-CF of—— in (2.3.7) and the order<” in §2.4,

__q:¢0<¢l<---<¢/(—2<_ <¢K—l<_£<¢K:O’
2 q q 5/lq q

31,

with k4 = 2hq + 1 and thep;’s given in 3.3.9, (3.3.9. Hence fors = +, -
one findsp,; € Jy1 for 1 <i < kg — 2 ande,,-1) € Je2. If we then define for
e = +, — the intervals

(3.3.12)
Je, '=JanN®, 1<i<kg—landhencd,, =P, 1<i<ky—-2

JsZ,i = ‘192 N (I)Si’ I = Kq - 1’ Kq’

we find that the partitiotM( fy) defined by

(3.3.13) la= Ung, U U Joa, U UJsm

e=+,—\ i=1 IKq

is Markovian. Indeed fog = +, — one findsfy(®.2) = Dir2), 1 <1 < hg—
2, fq (ngkq,l) = 6[0, A—zq], fq (ngkq,l) = 8[—%,¢1], fq (De2ic1) = Paivn)
for1<i<h,f, (Jsqu) = s[¢1, i;] andfy (Jem) = Iqform=3,4,.... The

mapsfg|, are monotone witty|, (x) = —1-mi, and(fq|J ) (y) = —
form=+1,+2 +3,....

y=- m/lq
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20 D. MAYER AND T. MUHLENBRUCH

Consider nextthe mafy in (3.1.9. In the case = 3 andl, = 1 define
the intervals)?,, m=2,3,...as

+=m»

N -1 -1 :
J5 = , respectively
rq+mrg+m+1
(3.3.14)
J* — _ J* — 1 1
-m Mo rg+m+1rg+mj|

Since-Ry = —5i- = 1+ rqandrq = —37-, see§2.3 we find
(3.3.15)

lr, = [-Re, Ryl = U U Jr, with Jx°nJ3° =0forallm#n.
e=+,— m=2
An easy calculation shows that

fa (I = €lrg. Ryl forallm> 2,

where one usel (—-R;) = rq, lim o fJ(rq+&) = rqand lim. o fJ(rq—¢) =
R;. Hence the intervalgly} define a Markov partitiooM(f;) and fJ is a
locally expanding, smooth Markov map.

For eveng define the intervald},, for me N as

R —1 respectively
(3.3.16) " g mag g+ (m+ g

J* — _ J* — 1 1

-m Mo rg+(M+1)Ag rq+miq |

Since according t0.3.9 R, = 1 for g even, a simple calculation shows
that fy(-Rg) = rq = 1 - 4. But according toZ.3.9 rq = [0; (1)**, 2] and
hence( fq*)hq_l (re) = [0; 2, (1)=-]. This with (2.3.5 shows that
1
2Aq+T1q

(1) R = ()" (1) =

The order of the pointg; € orbit* (—Rq) in (3.3.3 is given by

-1
21q +I'q

“Ry=vo<yr<... <y =

wherekq = hy by (2.3.3. Hencey; € J} for 0 <'i < kq — 1 whereag,, is
just the common boundary df andJ;. Define therefore the intervall;
as

(3.3.17) =33 NnY, foralll<i<kgande = +,-,
such that?, = U, J%, .
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NEAREST A4-MULTIPLE FRACTIONS 21

Then the partitiomM(fy), defined by

(3.3.18) IR = | (qu VS O ‘]:m)’
m=2

e=+,— \i=1

is a Markov partition, since

fe(9) =35, forl<i<i-1,

fy (‘J‘:lkq) = E[M,Rq

fy (I = 8|1, Ry| form>2.

and

The restrictionfq*

= of fg to the intervalJy, is given by

-1
fq*|Jm(x) =~ -Mg formeZ.,

and its inverse by

(f5],) " ) =

y+ Mg

fory e f5'(Im).

Remains the casgodd,q > 5. The intervals)}, fore = +,—, m> 2
are defined as faj even in 8.3.16:

-1 -1
g+ Mg rq+ (M+ 1)Aq

(3.3.19)  J::=

and J*%, :=-Jx.

The intervalsJ?, are defined as

J= [—Rq,m respectively
(3.3.20) )
T |
T rq+24g Rq] '
According to 8.3.9
= " __ "1 5 s g
wan, = (£7) " (-Ry) = o [0: 2, 1M, 2, 1Pe-1] *

and
Wonr1 = T3 (-Ry) = [0;2, 11,2, 17, 2]*

—— -1
<[0;3,1M,2,1%W"1 2]* = :
34q + I'q
Hencey; € J; = [—Rq, rq;—;q] for1 <i < 2hy = kg — 1 whereasion,1 =
Yy, € J3. Define fore = +, — the intervalsJ}; as
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22 D. MAYER AND T. MUHLENBRUCH

and the intervalg}, fori = kg, kq + 1 as
J‘:qu : J:Z m \IISKq = \Ilskq reSpeCtlve|y

-1

Jo =35\ Y, = ey | -

82Kq+1

Then the partition

Kkg+1 0
(3.3.22) IR = | [U J5 U U %l J;‘m)
m=3

e=+,— \ i=1 i=Kq

is a Markov partition. This follows from the following iddties, which can
be easily verified:

f“(Jg*m :s[rq,Rq] forallm=3,4,...,
fy(I,) =3, foralll<i<hg-1,
fy (I, ) =, foralll<i<hy,

fq*( Slzh) = [qu, - 82Kq+1 U UJ* U ‘]stm’

0=+,— m=3
fo (J;‘2 ) =Js, and
Kg+1
fq* (J‘:qu+l) = lﬂz, U ‘]81| U U J82| 6U U J UJd_ .o UJ 1.
i=kq +,— m=3

4. The mapsfy and f; and regular respectively dual regular 44-CF's

We are going to use the Markov partitiond(f,) respectivelyM(f;")
constructed in the forgoing section for the mdpsly — Iqandfy : I, —
Ir, to show that these maps can be conjugated to subshifts dieitein
alphabets. By introducing sofic systems closely relatedhése subshifts
the symbolic dynamics of the above two maps are directlytedl#o the
regular respectively dual regulag-CF's.

4.1. Symbolic dynamics forf; and a subshift of infinite type. For
g = 3 andfs: I3 — I3 let F be the alphabet = Z \ {0, +£1}. Define the
transition matrixA = (Ai,j)i o With A € (0,1 for & = +, - as follows:

AsZ,sm = 07 m Z 2’
(411) AgZ,—am = 1a m 2 2’
Agm=1 k>3 andallmeF.

Denote by E}, 7) the subshift over the alphab€twith
Fil ={¢=(@)ian & €F Agg, = L i €N}
and(z(£)); = &1 the shift map.
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Let OM(f3) = {x €lg:ANeZy: fJ(X) = O}. The projection map
m: 13\ OM(f3) — F) defined by

A(X) = &= @) if f(x)€dy forieN

is bijective with inverser‘l(ﬁ) = X, wherex is the unique point withx e
Jey NNi2q(fg ... 0 f) 134, That the point is uniquely defined follows
from the expanding property of the local brancligs= f3|Jm of the mapfs,
given on the intervaly, by f; = —)—1( —m, me Z\ {0, +1}. Obviously one
hasrm o f3 = T o onlz \ IM(F3).

For g even withg = 2h, + 2 define the alphabdt asF = {¢l;, ¢ =
+,—, 1 <1 < kg) UZ N {0, £1}. The transition matrixh = (Ai,j)i oF is
defined in this case as follows: ’

Asll’glhl = 1, l < | < Kq - 1,
Asl,(q_l,sm = 1, m= 2, 3, ey
(4.1.2) Agg-e, =1, 1<1<kq,
Aglkq’_m =1 m= 2, 3, ce
Angn=1 mezZ~N{0,£1}, nekF
and all the other matrix elements vanishing.

Define the sef M(fy) and the mapr: Iq \ IM(f;) — FJ in analogy to
the casal = 3. The same arguments as there show that this map is bijective
and conjugates; to the shift mapr with 7 o f3 = o only \ AIM(fy).

Forqg = 2hy + 3 = kg + 1 finally define the alphabét asF = {£1;, ¢ =
+, = 1<i<kg—lUled, e =+,—, kg—1 <1 <k} UZN {0, +1, £2}. The
transition matrixA = (Ai,j)i ¢ IS given in Table2.

The sedM(fy) and the map: 1\ dM(f) — F) are defined similarly
as in the foregoing cases= 3 andq even and have the same properties.
The inverse £)*: F,| — lq \ dM(fq) is given bya(£) = x with x €
Jo N NEa(Fe 0.0 f,) ™, wherefy = f|, foré =el, 1<l <kg-1
respectivelyf; = f|, for& = &2, kg < | < xq+ 1. Hence also in this
case the mayf, gets conjugated by to the shift mapr on the spacé& of
symbol sequences and therefore is itself a subshift of tefigpe.

4.2. A sofic system related to the magy and the regular 14-CF.
The transition matriba in (4.1.7) for the subshiftf; : 13 — I3 shows that a
symbol sequenc@ = (&)icy € F, = n(13\dM(f3)) ifand only if (&, a,1) #
(e2,em), m > 2 for all i € N. Hence this sequence gsregular forq = 3
andFL = A9 The inverse map™: FY| — 14\ dM(fy) therefore has the
formz71(a) = [0; a, a,, . . .]. This follows from

Lemva 4.2.1. For a = (a)iey € Az° a 3-regular sequence the limit
liMm,_[0; a1, a, ..., a,] exists and defines a pointexR.
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Actyery, =1 1< I < hq -2,

A =1,

£long-2,612ng
Aelth_z,saq =1
Aglth,—ali =1 1<i< kg — 1,
Aalth,—SZi =1 Kkg<i<kq+1,
AElth,—sm =1 m>3,
Apty 1oty =1, 1<i<hg-1,
ASlthfLSZKqu =1,
Actygrem =1, m23,
Ag—e1, = 1,

A£2Kq+1561i = 17 5 = +’ ) 2 S I S Kq l,
A82Kq+1,52i = 15 5 =+, 2 < I < Kq 1,
Asqu+1,5n = l’ 5 = +’ ) = 37

AaZKqul,—all = la
Amn=1 meZ~{0,+1,+2), neF,

TasLE 2. The transition matrid\ = (A; )i jer With e = +, -
for g-regular sequences agbdd, q > 5. All other matrix
elements vanish.

.....

.....

.....

..........

strictly expanding this set contains exactly one painBut this shows that
M, _.[0; as,a,...,a] = x O

In the casey # 3 the relation between the symbolic dynamics with re-
spect to the Markov partitionsA(f,) and thed4-CF is more complicated.
Indeed one has to introduce a corresponding sofic systemglpamthe
alphabetF the lettersel; respectivelys2; have to be replaced by the let-
tersel respectively?2 for alli. This corresponds to replacing the Markov
partition M(fy) defined in Sectior8.3 by the partition g (f;) defined as
lg = Us=r.—- Ume1 Jem With Iy given in 3.3.9. It is not difficult to see that
this partition is generating that meang’; fq‘("l)\]m is either empty or con-
sists of exactly one point. This follows again from the fdwdttall branches
of f, are expanding. Denote 87 (fy) the boundary points of the intervals
Jn including the pointx = 0 together with all their preimages under the
map f,. Sincex = 0 belongs to the orbit 0#%‘* the boundaried M(fy) and

8.7 (fy) coincide. Denote by "1, a7 (f,) — F with F = Z\ {0} the map
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7(x) = a = (&)iay When f(;‘l(x) € Ja. If m(x) = &, then obviouslyg; = mif
& =me Zanda = el if & = €1, for somel respectivelyg = 2 if & = €2
for somel. The following Lemma then holds

Lemma 4.2.2. The mapr: I\ 0 (fy) — Ag® c Fis bijective. The

inverse mapgr: Ay — g\ 0T (fg) is given byr(a) = [0; &y, &, .. ] -

Proor. Consider firsgjeven: From the definition of the transition matrix
Ain (4.1.2 for the case) = 2hy+2 it follows that there cannot be more than
hy consecutive symbolsl ina = (&)iaw = 7(X) since &)z, .m = 0 for all
m=2,3,...: indeedhy consecutive symbolsl are only possible for points
xwith fi74(X) € I, fori = 1,..., kg and fg* € J_4, for some 1< | < «q
or quq € J .n for somem > 2. This shows thah = (&)iay = 7(X) defines a
g-regular sequence ifl; °.

Given on the other hand suchgaregular sequenca = (&)iy there
exists a unique point € I\ dM(fy) with 7(X) = a: indeed if for somé > 1
andk > 0one hasy = a,1 = ... = a.x = €l anda,.1 = m # €1 consider
the sequence € F} with &, = el &1 = el1,..., & = el if
sign(m) # & respectivelyx = el 1, &1 = el2, ., & = el,n if
sign(m) = &, whereag; = a for all g # 1. Sincek < k4 — 1 respectively
k < kq — 2 in the second case, the sequetideelongs indeed té) and
hence there exists a poirte 14 \ IM(fy) with 7(x) = & and hence also
7(X) = a. The inverse map™ is again given byr*'(a) = [0; az, ay, .. ].
Since for anya € Ay ” there exists an unique € F which is related to
awhen replacing the symboisl; by the symbok:1, there exists therefore
X € lg N\ 0J(fy) with n(X) = £. But X, := [0; &, ap,...a0] € Jg,, ¢ and

.....

.....

The same reasoning can be applied inAthe apse 2h; + 3 odd to
show that the map:"Iq \ T (fy) — Ag° € F is bijective with inverse
7@ =[0; ar, &, .. .]. O

4.3. Symbolic dynamics forfy* and a subshift of infinite type. Let
us start again with the case= 3 and recall the Markov partitioM(f;)

defined in 8.3.19 by Ir, = U - Upeo I With 33, = & |-, -2 |

Denote byF the alphabeff = Z\{0, +1} and byA = (A j)i jer the transition
matrix with

(4.3.1) A)mn =1 forallm ne F with n# 2 sign(m),

and all the other matrix elements vanishing. DenotéM(f;") the set
OM(f3) = [y € I, - Ane Zoowith (£3)"(y) = r5or (fq*)” (y) =0}

and by+r, the sequencer, = (+3). Then one has fo =1y

*
J.fi
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Lemma 4.3.1. The map
7 g NOM(FF) = F N {§ €eF,:aAneZy: ") = igg},

given byn(X) = & = (&)iav if ()" € J¢ fori € N, is bijective, and
mo f¥ = ron. Itsinverse, the map™ : F}| — Ig, can be defined on the
entire set £ and is given byr(£) = x with x the unique point ing} with
xe I Mita(fro...of ‘1J;|‘+1.

Proor. Obviously all the preimages of the poirt= 0 have a finite
symbol sequence&d, ..., ¢&n), whereas the pointsry € JX, U J7; have the

two different symbol sequencegsrg) = § = (+ 3) respectivelyr(+rg) =

( + 2,¥3). The same holds then true for all the preimages of thesegoint
The pointx € Ig, is again uniquely determined because of the expansive
nature of the local branches of the mBp O

The mapf;}: Ig, — Ig, is hence a subshift of infinite type.

Consider next the caspeven withq = 2h, + 2 andky = hy. Recall the
Markov partitionM(f;") in (3.3.19. We define the alphabétas

F={el, e=+ -, 1<i<kgfUZ\ {0, 1)

and byA = (A j)i jer the transition matrix with matrix elements

(A)Sli,81i+1 = 1 for &€= +9 _1 1 S I S Kq - 1,
(4.3.2) (A)er,,m=1 for meF, m=#el; 1<i<k, and
(A)mn=1 for |m=>2 andall n=sign(ml,,

whereas all other matrix elements vanish. If we define agAitif;) by
IM(f3) = [y € Ir, = An e Zg with (f3)"(y) = =rq or (f7)"(y) = 0}
one shows in complete analogy with Lemea&.1
Lemma 4.3.2. The map
7 gy N M(f5) — Fi N {§ eF) 1 AneZy: (&) = iﬁq},

given byn(X) = £ = (&)iev if (fq*)“1 € J; fori € N, is bijective, and
mo f& = ton. ltsinverse, the map™ : F,' — Ig, can be defined on the
entire set E' and is given byr‘l(g) = X with x the unique point ing} with

* 00 * *\—1 1x
Xe Jfl mlzl(f& ©..-0 ffl J§|+1'

This shows that the mafy: Ir, — Ig, is @ subshift of infinite type also
for evenq.
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(A)sry ro1p, =1 for 1<i<hg-1,
(A)etong 1624 = 1
(A)etye5,, = 1
(A)etong ez = 1
(A)glth,m =1 meZ~\{0,+1, +2},
(A)etong,—2 = 1,
(A)e2e1, = L,
(Aot =1 for 2<i<ig—1,
(A)aquﬂ,gzi =1 for i=«q kq+1,
(A)gquﬂ,m =1 for meZ~{0, +1,+2},
(Ao, =1 for 1<i<ig—1,
(A)aquﬂ,—gzi =1 for i=«q kq+1,
(A)emer, =1 for 2<i<ikq—-1, e=+.-, meNx{0,12},
(A)em-e1, =1, e=+,-,
(A)sm-e2 =1, e=+,—, | =kq kq+1

for 1<i<hy-1,

TasLe 3. The transition matrid = (A; )i jer With e = +, -
for g-dual regular sequences aqddd, g > 5. All other
matrix elements vanish.

Consider finally the casg = 2h, + 3 andky = 2hy + 1. The Markov
partition M(f;) was given in this case ir8(3.29. Define the alphabdt as

F={el, e=+ -, 1<i<k-1juU
U{sZi, e=+,—, Kg<Ii<«Kq+ 1}UZ\ {0, £1, +2}.
The transition matrib = (A, )i jer has now the form given in Tabl

If aM(f;) denotes again the set of preimages of the pointstrq and
the pointx = 0 one shows as in the former cases that the map

g NOM(FE) - N e Fllt Ane Zug: (¢ = 21,
is bijective and the maf* is conjugated therefore di, \ IM(fy) to the
shift on F}/ \ {§ eF, 1 aAneZy: () = i[q}.
Hence also in the caspis odd the magf;" is conjugate to a subshift of
infinite type.

4.4. A sofic system related td and the dual regular 4,-CF. Inthe
case of the mag; the subshiftr : F)) — F}’ can be easily related to the
dual 23-CF: from the form of the transition matri\{ in (4.3.]) it follows
that the sequendee F}’ with b = 7(x) can be characterized by the fact that
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28 D. MAYER AND T. MUHLENBRUCH

(b, bi,1) # (M, 2sign(m)) for all i € N and hencép € AT On the other
hand any such sequene Aj ** belongs toF!’ and defines a unique point
X € Ig, throughdy NiZy(fF o...0 f2)7J . Sincex, := [0; by, ..., b.]* €
ng ﬁ{‘:l(fb*I o...0 ftﬁ)_l‘Jaﬂ for all n we find lim_. X, = X and hence
a1(b) = [0; by, by, ..., ]*.

To connect the subshift for the mdy in the casey = 2hg + 2 with the
dual 1,-CF one has to introduce the sofic systems by replacigaiththe
symbols+1;, 1 < i < k4 by the symbok1. This corresponds to replacing
the Markov partitionM(f;) by the generating partitiofr (f;) determined
by Ir, = Ue=s.— Umea Iim With %, defined in 8.3.19. Denote byd g (fy)
the set

0T (1) ={y € lr,. : An€ Zugwith (17)"(y) = rq or (f7)"(y) = O}

which obviously coincides with the sétM(f;). Then for the alphabet
F = Z ~ {0} one shows again

Lemma 4.4.1. The map
g N AT () —> AT {Q e AT AneZy: (D) = i[q} c FY

defined byr(x) = b = (by)iay if (1“(;)i‘l € J; fori € N, is bijective, and

7oty =10 Itsinverse, the map : AG™ — Ig, can be defined on the

entire setA]* and is given byt 1 : (b) = [0; by, by, ..., 1*.

Proor. Sincexy,, = (fX)(zrg) € I N J%, this point has two dif-
ferent dual regular sequencls= +(1, (-1)", -2, (-1)% — 1) respectively
b = +(1%1,2). Hence also all preimages of this point have twibedent
dual regular sequences, but these points all have the sdras the point
+rq. If b = (b)ie = 7(X) @assume thdb contains for som& > 0 and some
| > 0 a subsequend®,; = --- = b = &1 with eitherk = 0 orby # €1
andby, ;1 # €1. Then the sequence= (&)iay related tob by replacing the
symbols+1; by the symbok1 must be of the forng,, = 1., and hence
i = €1,y for 1 < i < I. This shows that < «;. The casd = «q
however is only possible if eithdr= 0 orbx = —em, m > 1. This shows
thatb = 7(X) € AT,

Given on the other hand ¢ ﬂgfeg with a subsequenda,, = ... =
b, = €1 andby, ;1 # €1 for somek and soméd then define the sequence
& such thaty,; = €1, i), 1 <i <. Sincel < «q respectivelyl < «xq -1
the sequencé belongs toF) and hence there exists a ponE Ig, with
n(X) = ¢ and therefore by construction alsxj = b. The inverse map™

is obviously defined for alb € A, An argument completely analogous
to the one in the casg= 3 then shows that™(b) = [0; by, b,,...]*. O
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Introduce finally in the casg = 2hg + 3 for the mapf;* the sofic system
defined by replacing i§ € F} all the symbolst1; by the symbok-1 and
the symbolst2, by the symbok2. Denote by (fy) the corresponding
generating partitiomg, = (.-, - Um1 J2n and byd g (f;") the set of preim-
ages of the pointg = +ry andx = 0 which obviously coincides with the set
OM(f). As in the previous cases one shows alsagfer2hg + 3

Lemma 4.4.2. The map
7 lg N AT (fy) > AN (b e AT bhas the tail £ 1} ¢ F"

defined byr(x) = b = (b)iay if (1“(;)i‘l € J; fori € N, is bijective and

o f§ =1oa. Itsinverse, the map™: AG* — Ig, can be defined on the

entire setA]* and is given byt 1: (b) = [0; by, by, .. .]*.

Proor. From the form of the transition matri in Table3itis clear that
there are only restrictions on the symbol sequdrice b = (b;)iay = 7(X) if
it contains subsequences of consecutive symbblsince 4); ; = 1 for all
jeFif|i| > 3. Assumédy, = m# 1landb =...= by = 1, by # £1
for somek > 0 and somé > 1, wherek = 0 means thab; = +1. Then
either (fq*)"+"1(x) €Jr, or (fq*)"+"1(x) € J7y, and hencey, = £l 1

—eg- ——<q
Or &k = +1an,. In the first casey,i = +1on,2¢-i)-1, 1 < i < | and hence
ék1 = +1on,(2-1). If m= +nfor somen > 3 then necessarily< hy - 1
since A)m.1, = Oforallme F. If on the other handh = #n for somen > 3
ork = 0thenl < hgwith | = hyiff {1 = £15. In the case {)(X) € J;lth
we find &, = i]-th—Z(I—i), 1 <i < | andhencéy,; = 112+2(hq—l)- This
shows that also in this case< hq. In the symbol sequendethere can
appear therefore no subsequence of more t@onsecutive symbols1.

Assume next that there existsbra subsequence bf consecutive sym-
bols +1 such thatox,; = ... = bxn, = +1 andby,n1 #= +1. Then
eitherk = 0, that mean®,,; = by, or by = ¥n for somen # 1. Then
(fq*)k+hq_1(X) c J:thq—l or (fq*)k+hq_l(X) € J;(lth and hencejkmq = 1,1
respectivelygfm1q = +1op,. The transition matrixd in Table 3 then shows
that in the first Casbiihgi1 = 24, and in the second case

funp €[NEF n# £l 1<i<kg—1 n# 2},

If §k+hq+l = iqu thené:k+hq+l+i = +1y forl<ic< hq and her]Cg:k+2hq+l =
+1 .

h[é in the second CaSking+1 = 241 then the maximal number of con-
secutive symbols:1 in b is hy — 1 since in this casén.2 = *1; for
somei > 3 and only fori = 3 one hasfy,on, = +1a,1. In all other
cases wheib,n,.1 # +2 the number of consecutive symbald is cer-
tainly bounded byh,. This shows that in the sequenite- 71(x) the subse-

quence £m, (+1)}, +2, (1)}, +2) and the subsequencel)** cannot ap-

pear. Hencé = #(x) € AJ* Since also in this case to evelnye Ag
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there exist a uniqué € FY which is related td by replacing the symbols
+1; respectively the symbols2; by the symbolst1 respectively+2, the
same arguments as in the previous cases apply to show, ¢havdrse map
atis given by71(b) = [0; by, b, .. .]*. O

4.5. Symbolic dynamics and the natural extensiofr, of the map f,.
Consider the map§, and ;. Since

fq([0; a1, @z, 83,4, ...]) = [0; &, @3,a4,...] and
fy([0; a0, a1, 2,a3,..]%) =[0;a,a2as3,...]%,

fq and f; are equivalent to the shift mapon one sided infinite sequences

a = (&)iar € Aq° respectivelya_ := (&)icz, € ﬂgfeg. Denote byA, the
set of two-sided infinite sequences

ﬂq:{gz(al)lez v' GZ’ VK>O (al’a|+l7’a|+k)¢8q}’

where 8, was defined inZ.2.9. The natural extension of the one-sided
shift mapr is the two-sided shift : A; — Ay with

(r(a)), = ais1, i € Z respectively its inverse
@) =aicZ ifa=(@)e.

The natural extensioR, of the mapf, respectively its inversE(;1 can
then be identified simply with the corresponding induced snap pairs of
points , y) with regular respectively dual regulag-CF

(4.5.1)

x=[0; as, a, a3, a4,...] andy = [0; ag,a 1,8 2, @ 3,84,...]",

as long as the two-sided sequemce (& )iz belongs taA,. Then,F, and
F,' satisfy
(4.5.2)
Fq([0; &1, @, .. .].[0; &, ...]*) = ([0; @, .. .].[0; a1, &, ...] ) and
Fg(|[0; ar,...],[0;a,a1,...]*) = ([0; ap, &1, .. .],[0; a1,...]%).
To characterize the s€l, of pairs ,y) with the above property, define in

afirststepy = I\ {x has a finite regulaiy — CF}. Obviouslyl has full
measure. Denote next by, : Aq — Iy the map

(4.5.3) IMy(...,a 1,80 &, a,a3...) =[0; a1, a,as,...].
By construction the following lemma holds.

Lemma 4.5.1. The ma; is surjective and satisfids$; o fq = 7 o I1;.

Next, definel? := Ir, \ {y has a finite dual regularq-CF} which has
full measure. Similar to4.5.3 the mapll,: Ay — I;q given by

(4.5.4) Iy(...,aa1,898,...)=[0;a,a,a,..]".
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is well defined, surjective and satisfiHs o fq* = 71 o II,. The following
Lemma characterizes the domain of definiti@g of the natural extension
Fq:

Lemma 4.5.2. For a € Ay we have

M5(8) € # [Yg-ivn Ro|  if T12(3) € B = £ [gi1. 1], i € (L. k).
The set)q C Iq X I, hence is given by
q

Qq = |_J([61-2 611 X [Ygrior, Ral) U ([ = b1 =] X [ = Ry =teg-iv1)-

i=1
Proor. W.l.0.g. assumél,(a) € ®; c I, whered; is defined in 8.3.9.
Forgeven Lemm&.3.1and thed,-CF of—% in (2.3.1) show

[0; (1)) < (@) < [0; (1)""].

Hencell;(a) has aly-CF of the formIly(a) = [0; (1), m,...] for some
m > 2. Sincea is g-regular we have

g = ( st &i—l’ &b &i+l’ cet aOl (1)hq—i, m ahq—i+2’ . )

with at mosti — 1 consecutive 1's in the sequenee;., . . ., ag). The point
I1,(a) hence is bounded by the largest and smallest number whade du
regulari,-CF starts with at most— 1 consecutive 1's and hence

[0; (1), 2, (1), 2]* < (@) < [0; (-1)", -2, (-1t -2]*.

But (3.3.4 and €.3.9 show that these bounds are jygt i1 andR.

The caseg odd,q > 5, is slightly more complicated. First, assuire
be even and put= 3. Then by Lemma.3.1and thel,-CF of -4 in (2.3.1)

My(a) € @z = [[0; (1) ], [0; (1), 2, (1) |
Hencell;(a) has alq-CF of the formlly(a) = [0; (1), 2, (1), m,.. ] for
somem > 2. Sincea € A, the sequencea(|.1, ..., a) in

g = ( ceey a—ja a—j+1a ce ey aO! (1)hq_j, 25 (1)hq, m ath_j+2, .. ')

cannot contain more thgn-1 consecutive digits 1. Hené&(a) is bounded
by the points

[0; (1) 2, (), 2, (1L, 2]
=< HZ(A) =< |[01 (_1)h’ _2’ (_1)h’ _2’ (_1)h_1’ _Z]I*'

which by LemmaB.3.1and @.3.9 are justy, »j.1 andRy,.
Next, consider the casendd and put = % for 1 <i < hy,. Again, by
Lemma3.3.1and @.3.5

(@) € ®ap.n = [[0; (1), 2, (W), [0; (1) 1]
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and therefordl;(a) has al,-CF of the formlIl;(a) = [0; (1)), m,...] for
somem > 2. Hence there is again a restriction on the sequance
a=(....anjsnan....a; 0", maj....),

not a forbidden block

and thereforél,(a) is bounded by

[0; (1)), 2, (D)L, 2, (1), 2]* < TIo(A)
< [0; (-1)", =2, [0; (=1)%, -2, (—1)ha, =2, (=1)a-L, —2]*,
which by Lemma3.3.1and @.3.]) respectively 2.3.9 are justy,, »; and

Finally forg = 3 Lemma3.3.1and @.3.9 show [0; 2] < IT;(a) < [0; ],
and therefordl,(a) has a1,-CF of the formIl;(a) = [0; m,...] for some
m > 2. Hencell,(a) must not have a leading digit 2. This implies the
boundsr; = [0; 3] < I1x(a) < [0; -2, -3] = Rs.

The casdli(a) € ®_; for some 1< i < «q follows from Iy (-a) =
—I11(a). O

Recall the definition of the doma®, in Lemma4.5.2and define the
setQy = Qq N (1§ X I;;q), which obviously is dense i€},. Then one has

Lewma 4.5.3. The mapll: Aq — Q with TI(a) = (IT(a). [Tx(a)) is a
bijection.
For Fq : Q5 — Qg and F;' 1 Q7 — QF given by(4.5.2) the diagrams

T ‘r’1

nl lnm and nl ln commute
Fq -1

Q; — Q Q; BN o

Proor. Obviously, the magdl is well defined. Commutativity of the
diagrams follows from combining Lemm@&5.1and

Iy(r(@)) = x(7(...,a1,a0; &1,82,...)) = Ia(...,a 1,80, &1; &, ...)

- [0;ana0a ... ]" = — - @
= ; A1, Ao, L. - |[a0, a—l""]l* +a1/lq B H2(§)+a]_/lq

respectively

Mi(rX@) = My(r71(..., a1, a0 ay,...) =a(...,a1;80,a,...)
-1 B -1
[as, @, ..] +a0dq  T1(a) + aodq’
Since the mapl: A, — Qy is obviously injective we only need to show
[(A) = QF. For this take X, y) € QF with

x=[0;a,a,as..] and y=][0;ap,a,a,,..]".

= [0; ag, a1, 8,...] =
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It (%Y) € ([#1-2. 61 N 15) % (W12, o] N1 1) for somei € (1. kq) the
definitions of¢; andy; as elements of orbﬁt—”—z“) and orbil(—Rq) respec-
tively imply that the bi-infinite sequence

a:=(....,aa1,8;a,8a:,8;s,...)
does not contain forbidden blocks, and heaeceAj. O

It is well known that the mapl: A, — R? is continuous (see for in-
stance [&]) when Ay is equipped with the usual metric of the shift space.

5. Some applications

5.1. Reduced geodesics 0G,\H and the natural extension of f,.
The Poincaré upper half-plane, equipped with the hyperimoétric ds® =
dxi;dyz, is denoted by = {ze C; Im(2) > 0}. The group of isometries of
this space is given by P$2 R). The boundary off is the projective line
PL.

: We consider oriented geodesics Bn Geodesic lines ofil are half-
circles perpendicular t&® or straight lines parallel to the imaginary axis
Re(2) = 0. An oriented geodesie@ on H will be represented by the two
base point&_, w, € R U {ico} with its orientation fromw_ towardsw,. We
denote such a geodesic by= (w_, w,).

We call two oriented geodesiasandv G4-equivalentf there exists an
elemeng € Gy with gw_ = v_ andgw, = v,.

Then one can show

Tueorem 5.1.1. Let w = (w_,w,) be a geodesic witlw_ having an
infinite regular respectively. having an infinite dual regulai,-CF. Then
there exist a geodesig’ = (w’, w’,) such that

e wandw’ are Gy-equivalent and
* (Sw,,-w") € Q.

Proor. We prove the Theorem first fay > 4. Using translations by
powers ofT; we may assume that fer = (w_, w,) either
e w, >0andw_ € [—Rq,—rq] C Ig, Or
e w, <0andw_ € [rq, Rq] C gy
Assumew, > 0 andw._ € |~Ry, ~rq| with infinite 1,-CF’s
(5.1.1) w, = [ag;ar,@,...] and w_=]0;by,by,..]".
Forx = Sw, andy = —w_ we have
{[0; ag,a1,8,...] ifag#0,
[a;a...] if ag=0and
y =[0; —=by, —by,...]*.

(5.1.2) X =
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The following three cases have to be discussed: = 2”7, “ap = 1” and
“ap=0".
If a9 > 2 thenw, > 21 - g and the1,-CF of xin (5.1.2) is regular. If

the two-sided sequence

(5.1.3) a:=(...,—bp,—by;a0,a,...)

belongs taA, then by Lemmat.5.3(Sw,, —w-) = (xy) = [I(a) € QF C
Q.
Assume therefora ¢ Ay. The forbidden block must appear around “;”
in (5.1.3. This can only happen fareven if(-by,,...—b;) = (1M) respec-
tively for g odd if (— b1, . .. —by) = (1", 2, 1). Using the lexicographic
order “<” in Section2.4we find

[0; 1M, .. ]* for g even and
[0; 1M, 2, 1M .. ]* for qodd

- {[O: (1)1, 2] forgevenand

—w_ = |[O, —bl, —bz,...]l* :{

=rq
[0; (1), 2, (1)1, 2] for qodd,g>5.

Then Lemma&.4.2implies [0;-bq, —by,...]* <rq.

On the other hand-w._ € |rq, Ry| implies—w_ > rq. This leads to a
contradiction.

If ag=0 thenw, € (0”—2“] c (Oﬂ—zq) Hencea; < O in the 1,-CF
(5.1.7). Form e Z., the sequencé— m, a;, ay,...) is g-regular and also
(—m by, by,...)is dualg-regular, sinceq < —w_ implies

_JI0; ()1, 2] if gis even and
a {[o; (1), 2, (1)1, 2]* if qis odd.
<[0; =by,-by,...]* = ~w_.

Forg = ST," define(w’, w}) = o' := g w with

w, =[0; -m,as,a,...] >0 and
(U/_ = |[01 —m, bla b2’ .- ']I* € (0’ —rq] - [rq, Rq]
The corresponding bi-infinite sequenge:= (...,-b;, m—-ma,...) is

theng-regular and Lemmad.5.3hence impliegS v/, —w”) = TI(@) € QF C
Q.

Forag; =1
g |[1; ()] for g even,
Wi 2 Ag= =400 an h
2 |[1; ()M, 2,(1)«] for qoddand
s (_1Yg-1 _27*
(5.14) -Ry<w_<-rq= [0; (1), -2] for g even,
[0; (1), -2, (1)1, -2]*  for q odd.
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Then the dual regular,-CF ofy cannot start fog even with a block of the
form (1™) respectively foig odd (1", 2, 1M).

Assumea ¢ Ay, with a defined as ing.1.3. Then a block of the form
(11,1 with 0 < | < hand 0< t < h must exist around the *;” ira
such thata;,1 # 1, -b,1 # 1. As in the case&y = 0, choose am €
Z~\{=2,-1,0,1} with (m+ 1, a3, a,, . ..) beingg-regular andf, by, by, .. .)
being dualg-regular: indeed angn with sign(m) = —sign(b,) can be used.
Defineg := STy and(w’, ) = ' 1= g w with

(5.1.5) W, =[0;m+1a,8,...]
W =[0;m by, by,.. ]* € rg, —1q|.
Then the bi-infinite sequen@® := (..., -b, —b;,—-m;m+ 1, &, a,...)is

g-regular and by Lemma.5.3(S ', —w’) = II(&) € Q.
The casev, < 0andw- € [rq, Rq] C Ig, can be treated in the same way.

The proof forq = 3 is similar to the casq > 4, however there are the
four casesy > 3,8, = 2, a9 = 1 anday = 0 to be considered.

If ag > 3 then we can argue as in the came> 2 before. Since
w_ < -rz = [0; =3]*, the bi-infinite sequenca in (5.1.3 is g-regular
and Bw,,-w-) = (x,y) =I1(a) € Q.

The casesy = 2 anday = 1 are similar to the casa = 1 forq > 4:
we just take the integgm| > 5 with mby < 0. Thenw’ is defined as
(0, w)) = =gwwithg:= ST"and hence

, [0O;m+2a,a,...] if ag=2and
w, = ) . B
[O;m+1a,a,...] if ag=1,

w. =[0;m by, by, ...]" €[ra, —rg].

The caseay = 0 is similar to the casep = 0 forq > 4, if we choose
there the integem > 3 and recall; = [0; 3] in (2.3.2. O

5.2. The transfer operator for G4. The authors of 4] have con-
structed a Poincaré secti@irfor the geodesic flowb;: S; Gg\H — S; Gq\H
on the Hecke surfacés,\H for which the Poincaré map: £ — X is basi-
cally given by the natural extensiéi of the mapf,: I — 4. The periodic
orbits of this geodesic flow can therefore be characterizethé periodic
orbits of F, and therefore also by the periodic orbits of the nfgpespec-
tively its periodic points which determine the onesHgfuniquely. Indeed,
Theorem2.5.1implies an almost one-to-one correspondence between the
periodic orbits of the geodesic flow on the Hecke surf&egdl and the pe-
riodic orbits of the magy, only the periodic orbits of the pointg and-r
which are not equivalent under the migead to the same periodic orbit of
the geodesic flow since these points Ggeequivalent. This shows already
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that the Selberg zeta functi@g, for the Hecke triangle groups defined as

Zo,(8) = ﬁ [T (1-etw0),

k=0 y prime

where the product is over the prime periodic orhitsf the geodesic flow
andl(y) denotes its period (and hence the length of the correspgrthsed
geodesic), cannot be expressed in terms of the transfeatopéor the map
fy alone. Indeed, to relate the above Selberg zeta functidmet®oincaré
mapP one uses the following Lemma by Ruelle/]:

Lemma 5.2.1. Zg, (B) = l_[ e Zran&BH for Re(8) > 1 where Z(8) is
k=0

the so called partition functionZ8) = 3,crye €725 (P®) and r: T —
R* denotes the recurrence time of the geodesic flow with redpeitie
Poincaré sectiorx.

In the transfer operator approach to the dynamical zetatimg the
partition functionsZ,(8) get expressed in terms of the traces of an oper-
ator constructed from the Poincaré mBp X — X respectively its re-
striction to the unstable directions. In our case the unstdbection is
one-dimensional and the restriction Bfto it is basically just the map
fy © Ig = lg. On the other hand one knows that the recurrence time
r: ¥ — R*in our case is given by(x) = log fc;(x)|. The Ruelle trans-
fer operatotL; then has the following form

(5.2.1) Ligx) = ), e’ Vg(y)

yefq(x)

whereg: I; — C is some complex valued function and @ > 1 to en-
sure convergence of the series. To get an explicit form ferdperator
Lz one has to determine the preimagesf any pointx € Il4. For this
recall the Markov partitiony = UieAKq ®; with A, = {+1,...,+kg} In
(3.3.9, determined by the interval®;, and the local inverses,(X) :=

-1 . i
(fq|3im) (x) = _an on the intervalsl.,m, 1 < m < oo, respectively 2<

X+

m < oo for q = 3, defined in§3.3 For 1 < i < «q denote byN; the
setN; = {n € Z \ {0} such that there existse A with ¢,(®;) c CI),-}. But

thenN; = Ujeaq Mij with N := {n € Z \ {0} such that?,(®;) c <I>j}. Us-
ing these sets we can rewrite the transfer opetgtan (5.2.1) as

(52.2) L5909 = > xa () D Fn(3) g#(9),

ieAKq neN;
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with x4, the characteristic function of the sbt. With g := g| o this can be
written also as follows

(5.2.3) L9 = >° > @Y g@a(9). xel.

jeA,(q neN;j

Thereby we used the Markov property of the partitign= UieAKq d;. If

g is continuous ond; for all i € A, then also £;Q); is continuous on
®;, that means; maps piecewise continuous functions to piecewise con-
tinuous functions. Unfortunately on the Banach spBce eaieAKqC(CDi) of
piecewise continuous functions the operaffris not trace class, it is even
not compact. Much better spectral properties however caacheved by
definingL; on a space of piecewise holomorphic functions. This is essi
since all the map$#.,, m > 1 have holomorphic extensions to a complex
neighbourhood of,. Indeed one shows

Lemma 5.2.2. There exist open discsi@ C, i € A with ®; c D; such
that for all ne A; ; we have?,(D;) c D; . Change -7

Consider therefore the Banach spd&e= &ica,,B(Di) with B(D;) the
Banach space of holomorphic functions on the ddsevith the sup norm.
On this space the transfer operafyhas the form

» o
(524) L@ =), Z(rlmq) gj(rrlmq), ze D

€A NEN |

which is well defined for R€3) > % In a forthcoming paper we will discuss
the spectral properties of this operator and its relatiothéoSelberg zeta
function for the Hecke triangle grouii,. Here we give the explicit form

of this operator for the casg= 3 andq = 4.

Forq = 3 one hasi; = 1 and thereforéd,, = {+1}. The index sets
Nij. 1, ] € A, are given byN11 = Zy3, N1_1 = Z<p, N1 = Zzp and
N—l,—l = Z<_3.

Forq = 4 one has alsa, = 1 and hencé?,, = {+1}. The index
setsN,j, i, ] € A, are given byN11 = Zso, Ni21 = Zea, Noug = Zsg
andN_;_1 = Z._,. This leads in these two cases to the following transfer

“’Changed’,(D;) c D; to #(D;) C D;
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operators

(£59)1(2)

Il
Nk
—_
N
+
s
P
o]
~——————
8
«Q
=
—_
N
Tl
>
k—»H
o]
~——————

(5.2.5)

oo 28 B
9-+@= ), (7700) @3]

+ i ! Y 1 zeD

wherel; = 1 andi, = V2 and the summation index in brackets belongs
to the caseq = 4. Forg = 3,4 the discsD;, i = +1 can be taken as

D, = i{ZE G, ‘z— (E)‘ < Aq—+2}

4 4
For q = 3 this operator and its eigenfunctions with eigenvalue 1
have been discussed if] Wwhere it was shown that these eigenfunctions are
directly related to the eigenfunctions with eigenvalpes+1 of the transfer
operator for the modular groups derived from a symbolic dynamics for
the geodesic flow using the Gauss continued fraction$zih [

6. 14-CF’s and Rosent-fractions

6.1. Regulari,-CF’s and reduced Rosent-fractions (q > 4). In[21]
Rosen discussed continued fractions of the form

&1

(611) ﬂ'o; (81 . rl), (82 . r2), (83 . r3), .. ] = ro/lq +

ridg + —2—
17%q r2}q+r3j§+...

withrg € Z andeg; = =1, r; > 1 fori € N. We call such expansiorigosen
A-fraction.

Rosen-fractions andl-CF’s can easily be transformed into each other
using the relations

(6.1.2) [ro;(e1:r1),(e2:12),(e3:13),...]

&1 -1
MAg+ ——=— —&1l1dq + -
redat e 18224t S reesiatg e
= [ro;—&1r Mo — r (-1) &r---&ri, .. ]
- 0, 81 1, ‘9182 25 818283 35 ce ey 81 SI Is ==
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and
(6.1.3) [a0;a,@2,8s,...] =agdq+ 1
al/lq + a21q+;1
agdg+t...
~ —sign(ay)
=t Suteste)
q az/lq+%zil?.r(%)

= [ao; (—sign(ay) : laul), (—sign(ay)sign(ay) : |azl),
(=sign(az)sign(as) : lag)), . - .].
As claimed in [L4, Remark 15] these relations imply directly

Lemma 6.1.1. Given a Rosen-fraction[ro; ..., (& : 1i), (gis1 : Fiz1), - - -
and its correspondingq-CF [ro; ..., &, a1, ...] in (6.1.3 we have

e =-sign(a;) and &1 = -sign(g a.1), (i € N).
Proor. Equation.1.2shows that the sign of tH& digit (1) &1--- & I;
in the formal1,-CF is determined by(1) ; - - - &. Hence, the ratio
(—1)i+1 €1 &€y
(-Dier---
determines whethex anda;,; have the same or opposite signs. O

= —¢&in1

Equations§.1.2 and 6.1.3 indeed relate regulat,-CF's and reduced

Roseni-fractions as we show next. Set
q-3| |hy—1 ifqisevenand

2 | |h if gis odd.
The abovenhr coincides with h” used in 21, above Definition 1]. Recall
from [21, Page 555]

Derinirion 6.1.2 (Reduced Rosenfractions). The Rosen-fraction in
(6.1.7) is calledreducedif it satisfies the following conditions:

(1) Blocks of the form
(¢+:2),(-1:1),...,(-1,2),(-1:%)

hr times

(614) hR = hRosen:: \‘

do not appear.
(2) Forqgodd, blocks of the form

(+:1),(=1:1)...,(-1:1)

hr times

do not appear.
(3) Forqodd, blocks of the form

(+«:1),(-2:1),...,(-2:1),(-12:2),(-1:12),...,(-1:1),(-1 %)
hg -1 times hg times

do not appear.
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(4) Forqg odd, a finite Roseni-fraction expansion does not terminate
in a block of the form
(«:1),(-1:1),...,(-1:1).

hg times

(5) The valuetﬁ—zq of the tail [(« : i), (€41 : iz1), ..., (&ik : i) Of @
finite Rosem-fractions leads becausemf; 14+ i; = (=) F
i; to non-uniqueness of the expansion. We always choose the firs
possibility.

Then one shows

Lemma 6.1.3. The following three statements hold:

e TheA,-CF associated to a reduced Roseiffraction expansion in
(6.1.2 is regular.

e The Rosen-fraction expansion corresponding to a regularCF
in (6.1.3 satisfies Propertieslj—(4) of Definition6.1.2

e The two expansions of the finite Rogefractions in 6) of Defini-
tion 6.1.2correspond to the identities of the finite regularCF’s
in Lemma2.2.2

Proor. Let x € R have the regular Rosetifraction expansiong.1.1).
We have to show that the correspondingCF in (6.1.2 does not contain
any forbidden block fromB,. We consider the casepeven andq odd
separately.

Letq be even. Using Lemm@ 1.1and the identityhg = hy—1in (6.1.9
we see that Propertyl) of Definition 6.1.2corresponds to the absence of
blocks of the form{(+1)", +m] for anym € Z.;.

Consider next| odd. Using again Lemm@ 1.1and the identityrr = h,
we see that Property2) of Definition 6.1.2corresponds to the absence of
blocks of the form[(+1)%*!]. Similarly, Property ) corresponds to the
absence of blocks of the forpa=1)%, +2, (+1)%, +m] for anyme Z.;.

This shows that no forbidden block frof, appears in thel-CF in
(6.1.2.

Next, letx € R have the regulaty-CF X = [ag; a1, &, as, . . .]. We have
to show that the corresponding formal Roskefraction in (6.1.3 satisfies
properties {)—(4) of Definition 6.1.2 Again, we discuss the casg®ven
andq odd separately.

Consider firsg even. Using Lemmé&.1.1and the identityhg = hy — 1
in (6.1.4 we find that forbidden blocks of the forfig=1)", +m| for any
m € Z., imply Property (). Property5 corresponds just to the ambiguity
of finite 1,-CF’s given in Lemma2.2.2since the tailg(+1)"] correspond
to ¢%q.

Consider nexg odd. Using Lemma&5.1.1 and recalling the identity
hr = hqin (6.1.4 we see that forbidden block&:1)"+*] imply Property @)
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and Property4) of Definition6.1.2 Property ) also implies Propertyl).
Property 8) follows from the forbidden blockg+1)"%, +2, (+1)"%, +m] and
for m € Z;,. The ambiguity of the regulat,-CF’s in Lemma2.2.2implies
Property b).

To finish the proof of Lemma&.1.3considerqg even and the finite regular
Aq-CF [ag; @y, ..., an, (1)]. Using Equation §.1.3 we rewrite it as the
Roseni-fraction

[a0; (—sign(ay) : |adl), - . -
.., (=sign(an-1)sign(ay) : [aq]), (~sign(ay) : 1), (-1 : 1.
Since by the equation below (4.2) inl] and by [L, (4)] the identity[O; (1 :
1), (-1: 1)1 = A—Z‘* holds, we are in the situation of Properg).(If a, < 0
we choose the+"-sign in Property §). If a, > 0 we use Lemma&.2.2to
rewrite the finite regulai,-CF such that its tail ends &, — 1, (-1)"%] with

sign(a, — 1) = sign(a,). Using Equation§.1.3 we arrive at the Rosen
A-fraction

[a0; (—sign(ay) : |aal), . ..
..., (=sign(an-1)sign(an — 1) : la, — 1), (sign(a, — 1) : 1), (-1 : 1.

with the correct tail.
The casea odd is analogous tq even, with the only dference that the

reduced Rosen-fraction% =[0;(1:1)(-1: 1)t (-1:2)(-1,1)4] as
given in [1, (4)] has the corresponding t&{tL)", 2, (1)]. O

Remark 6.1.4. Consider the,-CF of +rq in (2.3.2. Their correspond-
ing Rosem-fractions according to formul&(1.2 are

[0; (=1 : 1)t (=1:2), (-1, 1)1] for g even and
rq=1[0;(=1,1), (=1 : 1oL, (=1: 2), (-1 : 1)L, (-1 : 2), (-1, 1)]
for g odd
and
[0;(1:2),(-1:2)] forq =4,
o [0;(1:1),(-1:1fa2 (-1:2),(-1,1)w"1] for evenq > 6,
0 (L 1), (-1 1yt (=10 2) (-1 : 1pat (-1 2), (-1, 1)]
for g odd

where (1 : 1 means that the digit<1 : 1) is absent. The Roseh
fractions hence have the same tail.

Remark 6.1.5. The generating mafg for the dual regulan,-CF and
the generating mapfbR for the Rosent-fractions in [1] satisfy

1
XAq + %

1

1
:——/l —:fRX
X q[x/lq+1+%“ a ()

wemzi—@[
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Aq
forall x e (O, 7).
Formally, we find also

1

. 1
(%) = =~ 4

x/lq+%

1 1

T X q[x/lq+1+%q

‘ =T (¥

forall x € (O, ”—2“) whereT, is the generating map of theRosen fractions
discussed inq]. However, the parameter= —;—: lies outside the range €

[% qu] discussed inq], since by £.3.2 and @.3.§ —rq = 14— Ry € (O, A—Z‘*)

6.2. Regulari,-CF’s and convergents.We define the' convergent
in the following way:

DermviTioN 6.2.1. Given a regulaty-CF [ag; &y, . . ., an, .. .] of length at
leastn we define itsn" convergentas the fractior% where the numerator
p, and denominatog, are given as entries in the vector

Pn 1 ) 0
(6.2.1) ( ):TgOSTg ST ---STgn(l).

n
The convergents then satisfy the recursion relation

(6.2.2) (pn) = (p”‘z p”—l) ST (O) _ (an/lq Pn-1 - pn—z)
On On-2  On-1 1 andqOn-1 — On-2

which holds also fon = 0 andn = 1 if we definep_.; =1,p.>,=0,9.: =0
andg._, = —-1.

RemArk 6.2.2. In the casg = 3 Definition 6.2.10f the n" convergent
coincides with the usual definition as the raﬁp = [ag; a1, @, ..., a1,
since

. _[* Pn
[ao;a,@,...,a0] = (* Cln) 0
where the last expression is to be understood as a Mobnusforanation.

The following lemma will show that regulat,-CF’s are indeed well
defined and determine real numbers. This obviously is trugrfide regular
/lq'CF,S.

Lemma 6.2.3.Let[ap; a1, @y, .. .] be an infinite regulan,-CF and denote

by % it's n" convergent. Then for @ 4 the fraction% is the "
convergent of the corresponding reduced Rokémaction as defined if21,
Definition 3], for q = 3 the fraction% is a “Naherungsbruch” in the sense

of Hurwitz[8, §2].

Proor. The case = 3 has been shown i3].

Hence assumg > 4. Since the regulat,-CF is infinite, we don’t have
the ambiguities in Lemm@&.1.3 which shows that the corresponding Rosen
A-fraction

[a0; (=sign(ay) : laul), (—sign(as)sign(ay) : [azl), .. ]
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is reduced. Tha" convergen - of the reduced Rosenrexpansion is well
defined and satisfigg, > 1 by [21, Lemma 4]. We have

P ' ' '
a” = [ao; (—sign(ay) : laul), (-sign(as)sign(ay) : azl), - . .,
n
..., (=sign(an-1)sign(a,) : lan))]
_ [ag; an, @, ..., 8] = 2
On
with p, andq, satisfying 6.2.9. Hence we find indee®, = sign(q,) ps
andQ, = |qyl. h

This lemma shows that the results on convergent&ihhold also for
the regularly-CF’'s. We collect the relevant results iAl] and [5] in the
following

Lemma 6.2.4. The convergent% of an infinite regulari,-CF satisfy:
e g, # 0and|gy| > |y-1]- For g = 3 we havedn| > [0y-1l-

o limy_e [ — o0.

e The sequenc@g—:)neN is a Cauchy sequence.

Proor. This follows from Lemma 4, Lemma 5, Theorem 4 and the proof
of Theorem 5in 1] for g > 4 and forq = 3 from §2 and§3 in [8]. O

Now we can (re-)define infinite regulag-CF's in the following way:
Let [ao; &1, &, .. .] be a regulart,-CF. We assign the valueto the regu-
lar 14,-CF expansion and writg = [ag; ai, ay, . ..] where x is the limit of
the sequence of convergents (see Definiidn4and Lemmégb.2.9 of the
corresponding Roseftfraction.

Then the following estimate for the approximationxoby the conver-
gents holds:

Lemma 6.2.5. Let [ag; a1, @, ...] be an infinite regulari,-CF and de-
note its 1" convergents b)gf. There exists a constakrf > 0, independent
of x, such that

=
On

1
<

- 2
KqOn

holds for all n.

Proor. The lemma follows foig > 4 from Theorem 4.6 inl[] and for
g = 3 from Satz on page 383 i3] |

Remark 6.2.6. Obviously, Lemmé.2.5implies that infinite regulan-
CF’s converge. This gives another proof of part of Proposi#.2.1
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