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A. We discuss the nearestλq–multiple continued fractions and
their duals forλq = 2 cos

(
π
q

)

which are closely related to the Hecke
triangle groupsGq, q = 3, 4, . . .. They have been introduced in the case
q = 3 by Hurwitz and for evenq by Nakada. These continued fractions
are generated by interval mapsfq respectivelyf ⋆q which are conjugate to
subshifts over infinite alphabets. We generalize to arbitrary q a result of
Hurwitz concerning theGq- and fq-equivalence of points on the real line.
The natural extension of the mapsfq and f ⋆q can be used as a Poincaré
map for the geodesic flow on the Hecke surfacesGq\H and allows to
construct the transfer operator for this flow.
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1. Introduction

In the transfer operator approach to Selberg’s zeta-function for Fuch-
sian groupsG [12], [13] this functions is expressed through the Fredholm-
determinant of the generalized Perron-Frobenius operatorLβ for the geo-
desic flow on the corresponding surfaceG\H of constant negative curvature.
This operator is constructed through an expanding intervalmap f : I → I
closely related to a Poincaré map of the flow. In all the casestreated up to
now this interval map generates some kind of continued fraction expansion
like the Gauss expansion or its extensions such that the length spectrum of
the flow can be completely characterized by the periodic orbits of f respec-
tively the purely periodic continued fraction expansions.This program has
been carried out in full detail for the modular surfacesΓ \ H defined by
subgroupsΓ ⊂ PSL(2,Z) of the full modular group.

For these groups the transfer operator has another rather important prop-
erty: its eigenfunctions with eigenvalue 1 can be directly related to their
automorphic forms, that is real analytic Eisenstein seriesand Maass wave
forms respectively the holomorphic modular forms. This relation gave rise
to the theory of periodic functions [10], [2] which generalize the Eichler-
Manin-Shimura cohomology theory for holomorphic modular forms.

The physical interpretation of these relations between thetransfer op-
erator and the spectral properties of the Laplacian for these groupsG is
within the theory of quantum chaos [16], [19]: the transfer operator en-
codes the classical length spectrum of the geodesic flow and relates these
data to the quantum data, namely eigenvalues and eigenfunctions respec-
tively resonances of its quantized system. In this sense this transfer opera-
tor approach extends the more common approach to quantum chaos via the
Selberg-Gutzwiller trace formula [7, Theorem 13.8, p. 209], [11].

Obviously it is necessary to work out the transfer operator for more gen-
eral Fuchsian groups, especially non-arithmetic ones, forwhich the Hecke
triangle groupsGq are good examples, since up to the casesq = 3, 4, 6 all of
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them are indeed non-arithmetic. In [14] the authors constructed a symbolic
dynamics for the geodesic flow on the Hecke surfacesGq\H for arbitrary
q, the caseq = 3 was treated earlier in [9]. In both cases the authors used
the nearestλq-multiple continued fraction expansion, denoted for shortby
λq-CF, and their dual expansion. Another approach was discussed also in
[20]. Some of the ergodic properties of theseλq-CF’s for q even have been
worked out in [15] by H. Nakada. In the present paper we discuss theλq-
CF’s and their duals for arbitraryq via their generating interval mapsfq and
f ⋆q , which allow us to derive also a transfer operator for the Hecke triangle
groupsGq, whose Fredholm determinant is closely related to the Selberg
function for the groupsGq as we will discuss in a forthcoming paper.

In [8] Hurwitz introduced nearest integer continued fraction expansions
of the form

(1.1) a0 +
−1

a1 +
−1

a2+
−1

a3+
−1
...

wherea0 is an arbitrary integer and theai, i ≥ 1, are integers satisfying
|ai | ≥ 2 andai ai+1 < 0 if |ai | = 2. They are generated by the interval map

f3 : I3 → I3; x 7→ −1
x
−

〈

−1
x

〉

,

whereI3 =
[

−1
2,

1
2

]

and 〈x〉 denotes the nearest integer tox, by the usual
algorithm:

(0) a0 = 〈x〉 andx1 := x− a0,
(1) a1 =

〈
−1
x1

〉

andx2 := −1
x1
− a1 = f3(x1),

( i ) ai =
〈
−1
xi

〉

andxi+1 := −1
xi
− ai = f3(xi).

(⋆) The algorithm terminates ifxi+1 = 0.

Let PSL(2,Z) = SL(2,Z) mod {±1} denote the the full modular group.
Elements of the group can be identified with 2× 2-matrices with integer
entries and determinant 1, up to a common sign. The group actson the
projective real lineR ∪ {∞} by Möbius transformations

(
a b
c d

)

z = az+b
cz+d . The

group PSL(2,Z) is generated by the elementsS and T corresponding to
the actionsz 7→ −1

z andz 7→ z + 1. The generators satisfy the relations
S2 = (S T)3 = 1. In particular, the elementsTa andS Ta correspond to
the actionsz 7→ z + a andz 7→ −1

a+z. Hence we can write the continued
fraction expansion in (1.1) in terms of a (formal) Möbius transformation as
Ta0 S Ta1 S Ta2 S Ta3 · · · 0.

Hurwitz found in [8], that equivalence of two pointsx, y ∈ R under
the generating mapf3 is not the same as equivalence under the group ac-
tion of PSL(2,Z). This is obviously in contrast with the case of the Gauss
map fG : [0, 1] → [0, 1] with fG(x) = 1

x mod 1 and the modular group
PSL(2,Z).
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In [15] Nakada introduced for even integersq ≥ 4 the nearestλq-
multiple continued fractions withλq = 2 cosπq, which we will denote by
λq-CF’s. They are similar to the Rosen contined fractions introduced in
[21] and discussed in detail in [1]. The extension to the caseq ≥ 3 odd is
straightforward, whereq = 3 corresponds to the nearest integer continued
fractions of Hurwitz. Theseλq-CF’s and their dual expansions, introduced
for q = 3 also by Hurwitz, can be generated by interval mapsfq and f ⋆q
closely related to the Hecke triangle groupsGq. Both maps are conjugate
to subshifts over infinite alphabets, which when reduced to certain sofic
systems, determine completely the properties of the correspondingλq-CF
and its dual expansion. It turns out, that Hurwitz’s result on equivalence of
points on the real axis underf3 and the group action of PSL(2,Z) is true
for generalq ≥ 3: there exists for everyq ≥ 3 exactly one pair of points
(

rq,−rq
)

which are equivalent underGq but not under the mapfq. The nat-
ural extensionFq of the interval mapfq : Iq → Iq can be easily constructed
from the symbolic dynamics of the mapsfq and f ⋆q as sofic systems. It can
be used to construct a Poincare section for the geodesic flow on the Hecke
surfaceGq\H, and hence also a transfer operator for the groupGq and its
Selberg zeta function. The properties of this operator willbe discussed
elsewere.

The structure of this article is as follows: In Section2 we introduce
the Hecke triangle groups and theλq-CF’s respectively the dualλq-CF’s.
In Section3 we discuss the interval mapsfq and f ⋆q generating the near-
estλ-multiple continued fractions and construct Markov partitions for these
maps. In Section4 we show that the mapsfq and f ⋆q are conjugate to sub-
shifts over infinite alphabets and introduce sofic systems closely related to
the λq-CF and its dual. This allows a simple construction of the natural
extensionFq of the map fq. In Section5 we relate the natural extension
Fq to the geodesic flow on the Hecke surfacesGq\H and derive the trans-
fer operator for this flow. The final Section6 contains a discussion of the
convergence properties of theλq-CF’s by relating them to reduced Rosen
λ-fractions as discussed in [21].

2. Nearestλq-multiple continued fractions

2.1. Hecke triangle groups.Hecke triangle groups are Fuchsian
groups of the first kind, all except three are non-arithmetic. The reader
may wish to consult [6, pp. 591, 627] for a discussion of Hecke triangle
groups and their relation to Dirichlet series.

Denote by PSL(2,R) the projective special linear group given by

(2.1.1) PSL(2,R) = SL(2,R)/ {±1}

where±1 =
(

±1 0
0 ±1

)

. We denote by

[

a b
c d

]

=

{(

a b
c d

)

,

(

−a −b
−c −d

)}

the el-

ements of PSL(2,R), but identify often elements of PSL(2,R) and SL(2,R).
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For a given integerq ≥ 3 theqth Hecke triangle group Gq is generated
by

(2.1.2) S :=

[

0 −1
1 0

]

and Tq :=

[

1 λq

0 1

]

with relations

(2.1.3) S2 =
(

S Tq

)q
= 1,

whereλq is given by

(2.1.4) λq := 2 cos

(

π

q

)

Lateron we also need the element

(2.1.5) T′q :=

[

1 0
λq 1

]

= S T−1
q S ∈ Gq.

We may suppress theq-dependence in our notation when we work with a
fixed value ofq.

The Hecke triangle groupGq is a discrete subgroup of PSL(2,R) and its
limit set is the projective lineP1

R
= R ∪ {∞}. It acts on the upper half-plane,

the lower half-plane and onP1
R

by Möbius transformations

(2.1.6) Gq × P1
R
→ P1

R
;

([

a b
c d

]

, x

)

7→
[

a b
c d

]

x :=






ax+b
cx+d if x ∈ R and
a
c if x = ∞.

The pointsx, y ∈ P1
R

areGq-equivalentdenoted byx ∼Gq y, if there
exists an elementg ∈ Gq such thaty = g x. Obviously, this is an equivalence
relation.

2.2. Nearestλq-multiple continued fractions and their duals. Con-
sider finite or infinite sequences

(

ai
)

i. We denote periodic parts of the se-
quences by overlining the period part and finitely repeated patterns are de-
noted by a power where a 0th power vanishes:

(

a1, a2, a3
)

=
(

a1, a2, a3, a2, a3, a2, a3, . . .
)

,
(

a1, (a2, a3)
i, a4, . . .

)

=
(

a1, a2, a3, a2, a3, . . . , a2, a3
︸                       ︷︷                       ︸

i timesa2,a3

, a4, . . .
)

and

(

a1, (a2)
0, a3, . . .

)

=
(

a1, a3, . . .
)

.

We use also−(a1, . . .
)

=
( − a1, . . .

)

.
Put

(2.2.1) hq :=






q−2
2 for q even and

q−3
2 for q odd.
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We define the setBq of forbidden blocksas

(2.2.2) Bq :=






{( ± 1
)} ∪⋃∞

m=1{
( ± 2,±m

)} for q = 3,

{((±1)hq+1)} ∪⋃∞
m=1{

(

(±1)hq,±m
)} for q even and

{((±1)hq+1)}∪
∪⋃∞

m=1{
(

(±1)hq,±2, (±1)hq,±m
)} for q odd,q ≥ 5.

The choice of the sign is the same within each block. For example
(

2, 3
)

,
( − 2,−3

) ∈ B and
(

2,−3
)

< B for q = 3.
We call a sequence

(

a1, a2, a3, . . .
)

q-regular if
(

al , al+1, . . . , aL
)

< Bq

for all 1 ≤ l < L anddual q-regularif
(

aL, aL−1, . . . , al
)

< Bq for all 1 ≤
l < L. Denote byAreg

q respectively byAdreg
q the set of infiniteq-regular

respectively dualq-regular sequences (ai)i∈N.

A nearestλq-multiple continued fraction, or λq-CF, is a formal expan-
sion of the type

[a0; a1, a2, a3, . . .] := a0λq +
−1

a1λq +
−1

a2λq+
−1

a3λq+...

(2.2.3)

with ai ∈ Z,0, i ≥ 1 anda0 ∈ Z.
We say that [a0; a1, a2, a3, . . .] convergesif either [a0; a1, a2, a3, . . .] =

[a0; a1, a2, a3, . . . , aL] has finite length or limL→∞[a0; a1, a2, a3, . . . , aL] ex-
ists inR.

We adopt the same notations as introduced for sequences earlier. For
example we write [a0; a1, a2, a3] for a periodic tail of the expansion and
−[a0; a1, . . .] for [−a0;−a1, . . .].

A λq-CF is regular respectively dual regular if the sequence
(

a1, a2, a3, . . .
)

is q-regular respectively dualq-regular. Regular and dual
regularλq-CF’s are denoted by [[a0; a1, . . .]] respectively [[a0; a1, . . .]]⋆.

P 2.2.1. Regular and dual regularλq-CF’s converge.

P. The proposition follows immediately from Lemmas 4 and 34 in
[14]. �

An alternative proof of Proposition2.2.1 for infinite regular and dual
regular expansions with leading 0 follows also from the lemmas in the Sec-
tions4.2and4.4.

Convergingλq-CF’s can be rewritten in terms of elements of the Hecke
triangle groupGq: if the expansion (2.1.4) is finite it can be written as fol-
lows

[a0; a1, a2, a3, . . . , aL] = a0λq +
−1

a1λq +
−1

a2λq+
−1

a3λq+... −1
aLλq

= Ta0 S Ta1 S Ta2 S Ta3 · · · S TaL 0,(2.2.4)
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since −1
aλq+x = S Ta x. For infinite convergingλq-CF the expansion has to be

interpreted as

[a0; a1, a2, a3, . . .] = lim
L→∞

[a0; a1, a2, a3, . . . , aL]

= lim
L→∞

Ta0 S Ta1 S Ta2 S Ta3 · · · S TaL 0

= Ta0 S Ta1 S Ta2 S Ta3 · · · 0.

An immediate consequence of this is

L 2.2.2. For a finite regularλq-CF one finds for q even

[[a0; a1, . . . , an, (1)h]] = [[a0; a1, . . . , an − 1, (−1)h]]

respectively for q odd

[[a0; . . . , an, (1)h, 2, (1)h]] = [[a0; . . . , an − 1, (−1)h,−2, (−1)h]] .

P. Assume the left hand side to be regular. This impliesan , 1 and
hence the right hand side is regular, too. Conversely, assume the right hand
side to be regular and hencean − 1 , −1. Therefore the expansions on the
left hand side are regular.

The identity now follows by writingλq-CF’s in terms of Möbius trans-
formations and using the identity (S T)hq 0 = T−1 (S T−1)hq S T−1S 0 =
T−1 (S T−1)hq 0 since 0 is a fixed point ofS T−1S = T′. �

R 2.2.3. Forq = 3 the nearestλq-multiple continued fractions
are in fact the well-known nearest integer fractions extensively discussed
by Hurwitz in [8]. In particular, Theorem2.1.2for q = 3 was proved by
him there. We include his results for the sake of completeness and to show
how this special caseq = 3 fits well into the discussion of the case of odd
q ≥ 5. See also Remark2.3.2.

R 2.2.4. Forq ≥ 4 the regularλq-CF’s correspond to Rosen’s
λq-fractions introduced in [21] and discussed in [1]. We will discuss this
relation in more detail in§5.1.

2.3. Special values and their expansions.The following results are
shown in [14]:

The pointx = ∓λq

2 has the regularλq-CF

(2.3.1) ∓
λq

2
=






[[0; (±1)hq]] for evenq and

[[0; (±1)hq,±2, (±1)hq]] for odd q.

Put
Rq := λq + rq with

rq :=






[[0; 3]] for q = 3,

[[0; (1)hq−1, 2]] for q even and

[[0; (1)hq, 2, (1)hq−1, 2]] for q odd,q ≥ 5.

(2.3.2)
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8 D. MAYER AND T. MÜHLENBRUCH

whose expansion is periodic of lengthκq with

(2.3.3) κq :=






hq =
q−2

2 for evenq and

2hq + 1 = q− 2 for oddq,

The regular respectively dual regularλq-CF of the pointx = Rq has the form

Rq =






[[1; (1)hq−1, 2]] for evenq,

[[1; (1)hq, 2, (1)hq−1, 2]] for oddq ≥ 5 and

[[1; 3]] for q = 3.

(2.3.4)

=






[[0; (−1)h,−2, (−1)hq−1]]⋆ for evenq,

[[0; (−1)h,−2, (−1)hq,−2, (−1)hq−1]]⋆ for oddq ≥ 5 and

[[0; −2,−3]]⋆ for q = 3.

(2.3.5)

Moreover,

Rq = 1 and − Rq = S Rq for evenq and(2.3.6)

R2
q + (2− λq)Rq = 1 and − Rq =

(

TS
)hq+1 Rq for oddq(2.3.7)

andRq satisfies the inequality

(2.3.8)
λq

2
< Rq ≤ 1.

R 2.3.1. ForR3 one finds

1+ R3 =
1+
√

5
2

.

R 2.3.2. The form of theλq-CF of r3 in (2.3.2) can be obtained
from the expansions forq odd,q ≥ 5 by interpreting it as a Möbius trans-
formation with (1)−1 asS T−1:

r3 = [[0; 1h3, 2, (1)h3−1, 2]] = [[0; 2, (1)−1, 2]]

= S T2 S T−1 S T2 · S T2 S T−1 S T2 · · · 0

= S T2 TS TS S T2 · S T2 TS TS S T2 · · · 0

= S T3 S T3 · S T3 S T3 · · · 0 = [[0; 3]].

2.4. A lexiographic order. Let x, y ∈ Ir :=
[

−Rq,Rq

]

have the regular
λq-CF’s x = [[a0; a1, . . .]] and y = [[b0; b1, . . .]]. Denote byl(x) ≤ ∞ respec-
tively l(y) ≤ ∞ the number of entries in the aboveλq-CF’s. We introduce a
lexiographic order“≺” for λq-CF’s in the following way: Forn ∈ Z≥0 being
the number of equal digits at the head of theλq-CF’s, i.e.,ai = bi for all
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0 ≤ i ≤ n andl(x), l(y) ≥ n, we define
(2.4.1)

x ≺ y :⇐⇒






a0 < b0 if n = 0,

an > 0 > bn if n > 0, bothl(x), l(y) ≥ n+ 1 andanbn < 0,

an < bn if n > 0, bothl(x), l(y) ≥ n+ 1 andanbn > 0,

bn < 0 if n > 0 andl(x) = n or

an > 0 if n > 0 andl(y) = n.

We also writex � y for x ≺ y or x = y.
This is indeed an order on regularλq-CF’s, since Lemmas 22 and 23 in

[14] imply:

L 2.4.1. Let x and y have regularλq-CF’s. Then x≺ y if and only
if x < y.

The authors of [14] introduce a process called “rewriting” ofλq-CF’s
where forbidden blocks in theλq-CF are replaced by allowed ones without
changing its value. The rules for “rewriting” are based on the interpretation
of aλq-CF in terms of Möbius transformations given by group elements of
the Hecke group, see (2.2.4), and applying the group identities (2.1.3). We
refer in particular to Lemma 11 and Lemma 13 in [14] for the details. A
simple example for this rewriting is used in the proof of Lemma2.2.2.

It follows from the proof of Lemma 34 in [14] that every dual regular
λq-CF can be rewritten into a regularλq-CF.

L 2.4.2. The lexiographic order≺ in (2.4.1) can be extended to
dual regularλq-CF’s with leading digit0. Rewriting two dual regularλq-
CF’s satisfying[[0; a1, . . .]]⋆ ≺ [[0; b1, . . .]]⋆ into regularλq-CF’s does not
change their order.

R 2.4.3. The lexiographic order ”≺ ” however cannot be de-
fined for all dual regularλCF’s with arbitrary leading coefficient as the fol-
lowing example shows: consider the dual regularλ3-CF’s of R3 in (2.3.4)
and (2.3.5). ObviouslyR = [[0; −2,−3]]⋆ = [[1; 3]]⋆. Extending naively
“≺” in (2.4.1) to this case would lead to [[0;−2,−3]]⋆ ≺ [[1; 3]]⋆ and hence
[[0; −2,−3]]⋆ ≺ [[0; −2,−3]]⋆.

P  L 2.4.2. The λq-CF’s [[0;a1, . . .]]⋆ and [[0;b1, . . .]]⋆ are
dual regular. No rewriting is necessary if both are also regular.

Assume [[0;b1, b2, . . .]]⋆ starts with a forbidden block. If it is of the form

[[0; b1, b2, . . .]]
⋆ =






[[0; (1)hq,m]]⋆ for evenq,

[[0; (1)hq, 2, (1)hq,m]]⋆ for oddq ≥ 5 and

[[0; 2,m]]⋆ for q = 3
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10 D. MAYER AND T. MÜHLENBRUCH

with m ≥ 2 for q ≥ 4 respectivelym ≥ 3 for q = 3, then [[0;a1, a2, . . .]]⋆

must be of the form

[[0; a1, a2, . . .]]
⋆ =






[[0; (1)hq, n]]⋆ for evenq,

[[0; (1)hq, 2, (1)hq, n]]⋆ for oddq ≥ 5 and

[[0; 2, n]]⋆ for q = 3

with n < m andn ≥ 2 for q ≥ 4 respectivelyn ≥ 3 for q = 3. Using the
rewriting rules in Lemmas 11 and 13 in [14] we find

[[0; a1, a2, . . .]]
⋆→ [[ ã0; ã1, ã2, . . .]]

:=






[[−1; (−1)hq, n− 1, . . .]] for evenq,

[[−1; (−1)hq,−2, (−1)hq, n− 1, . . .]] for odd q ≥ 5,

[[−1;−2, n− 1, . . .]] for q = 3 and

respectively

[[0; b1, b2, . . .]]
⋆→ [[ b̃0; b̃1, b̃2, . . .]]

:=






[[−1; (−1)hq,m− 1, . . .]] for evenq,

[[−1; (−1)hq,−2, (−1)hq,m− 1, . . .]] for odd q ≥ 5,

[[−1;−2,m− 1, . . .]] for q = 3

hence by (2.4.1) [[−1; ã1, ã2, . . .]] ≺ [[−1; b̃1, b̃2, . . .]].
If [[0; b1, b2, b3, . . .]]⋆ is of the form

(2.4.2)

[[0; b1, b2, . . .]]
⋆ =






[[0; (−1)hq,−m, . . .]]⋆ for evenq,

[[0; (−1)hq,−2, (−1)hq,−m, . . .]]⋆ for oddq ≥ 5,

[[0; (−2,−m), . . .]]⋆ for q = 3

with m ≥ 2 for q ≥ 4 respectivelym ≥ 3 for q = 3, and [[0;a1, a2, . . .]]⋆

does not contain a forbidden block starting witha1, the rewriting rules in
[14] give

[[0; b1, b2, . . .]]
⋆ → [[ b̃0; b̃1, b̃2, . . .]]

=






[[1; (1)hq, 1−m, . . .]] for evenq,

[[1; (1)hq, 2, (1)hq, 1−m, . . .]] for odd q ≥ 5,

[[1; 2, 1−m, . . .]] for q = 3.

Therefore (2.4.1) implies [[0;a1, a2, . . .]]⋆ ≺ [[1; b̃1, b̃2, . . .]].
If [[0; b1, b2, b3, . . .]]⋆ is of the form (2.4.2) and [[0;a1, a2, . . .]]⋆ is of the

form

[[0; a1, a2, . . .]]
⋆ =






[[0; (−1)hq,−n]]⋆ for evenq,

[[0; (−1)hq, 2, (1)hq,−n]]⋆ for oddq ≥ 5 and

[[0; 2,−n]]⋆ for q = 3

Project nameλq-continued fractions Version date03.03.2009 Print dateMarch 3, 2009 - 10
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with n > m then the rewriting rules in [14] lead to

[[1; ã1, ã2, . . .]] =






[[1; (1)hq, 1− n, . . .]] for evenq,

[[1; (1)hq, 2, (1)hq, 1− n, . . .]] for odd q ≥ 5,

[[1; 2, 1− n, . . .]] for q = 3,

[[1; b̃1, b̃2, . . .]] =






[[1; (1)hq, 1−m, . . .]] for evenq,

[[1; (1)hq, 2, (1)hq, 1−m, . . .]] for odd q ≥ 5,

[[1; 2, 1−m, . . .]] for q = 3,

and hence [[1; ˜a1, ã2, . . .]] ≺ [[1; b̃1, b̃2, . . .]].
Completely analogous are the cases when [[0;a1, . . .]]⋆ with a forbidden

block or the first forbidden block starts atan, n > 1 and [[0;b1, b2, . . .]]⋆ is
a regularλq-CF. If both [[0;a1, . . .]]⋆ and [[0;b1, . . .]]⋆ have the same forbid-
den block starting ata1 respectivelyb1 then both dual regularλq-CF’s are
rewritten in the same way and the forbidden block does not influence the
order “≺”. �

2.5. Equivalence relations and continued fractions.Let x, y ∈ R
have infinite regularλq-CF’s x = [[a0; a1, . . .]] and y = [[b0; b1, . . .]]. We
say thatx andy are regular λq-CF-equivalent, denoted byx ∼reg y, if the
regularλq-CF’s of x andy have the same tail, i.e., there existsm, n ∈ N such
that the sequences (am, am+1, . . .) and (bn, bn+1, . . .) coincide. Obviously, this
is an equivalence relation. We can extend this equivalence relation to all
regularλq-CF’s by declaring all finite regularλq-CF’s to be regularλq-CF-
equivalent.

T 2.5.1 (Equivalence relations).For x, y ∈ R the following prop-
erties are equivalent:

(1) x ∼Gq y.
(2) x and y satisfy:

• x ∼reg y or
• x ∼reg ±r and y∼reg ∓r.

To prove the proposition, we need the following lemmas:

L 2.5.2. If x has an infinite regularλq-CF and g ∈ Gq satisfies
g x ∈ R, then g x has an infiniteλq-CF with at most hq consecutive digits
±1. Its tail coincides with the tail of the regularλq-CF of x.

P. -1 Let x have the regularλq-CF x = [[a0; a1, . . .]]. We can writeg Change -1
as a word in the generatorsS andTq: g = Tb0

q S Tb1
q S Tb2

q · · · S Tbm
q Sδ with

b0 ∈ Z, bi ∈ Z,0, i = 1, . . . ,m, andδ ∈ {0, 1}. Theng x can formally be
written asg x= Tb0 S Tb1 S Tb2 · · · S Tbm Sδ Ta0 S Ta1 S Ta2 · · · 0.

Consider forn > msufficiently large the elementgn ∈ Gq given by

(2.5.1) gn := Tb0
q S Tb1

q S Tb2
q · · · S Tbm

q Sδ Ta0
q S Ta1

q S Ta2
q · · · S Tan

q ∈ Gq.

-1Beweis leicht umformuliert.
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12 D. MAYER AND T. MÜHLENBRUCH

evenq: (m≥ 1)
±[ai−1, 1hq+1, 2, 1hq−1,m

] → ±[ai−1 − 1, (−1)hq−1, (1)hq,m
]

±[ai−1, 1hq, 2, 1hq−1,m
] → ±[ai−1 − 1, (−1)hq, 1hq,m

]

oddq ≥ 5: (m≥ 2)
±[ai−1, 1hq+1, 2, 1hq

] → ±[ai−1 − 1, (−1)hq, 1hq+1]

±[ai−1, 1hq+1, 2, 1hq−1, 2, 1hq,m
] → ±[ai−1 − 1, (−1)hq, 1hq, 2, 1hq,m

]

±[ai−1, 1hq, 2, 1hq, 2, 1hq
] → ±[ai−1 − 1, (−1)hq,−2, (−1)hq, 1hq+1]

±[ai−1, 1hq, 2, 1hq, 2, 1hq−1, 2, 1hq,m
] → ±[ai−1 − 1, (−1)hq,−2, (−1)hq, 1hq, 2, 1hq,m

]

q = 3: (m≥ 3 andn ≥ 0)
±[ai−1, 2, 3,m

] → ±[ai−1 − 1,−2, 2,m
]

±[ai−1, 2, 2, 2n, 3,m
] → ±[ai−1 − 1,−(3+ n), 2,m

]

T 1. Under assumptions of Lemma2.5.3we list all pos-
sibilities where the rewriting of a forbidden block generates
a new forbidden block. The forbidden blocks are underlined.

The identitiesS2 = 1,
(

S T±1
q

)q
= 1, Ta

q

(

S T±1
q

)q−1
S Tb

q = Ta+b∓1
q and

Ta
q

(

S T±1
q S Tb

q

)l
= Ta∓1

q

(

S T∓1
q

)q−l−2
S Tb∓1

q for hq + 1 ≤ l ≤ q − 2 anda, b
arbitrary follow from (2.1.3). But q− l − 2 ≤ q− (hq + 1)− 2 = hq − 1 for q
even andq− l−2 ≤ hq for q odd. We apply these identities recursively ongn

in (2.5.1). After a finite number of steps one arrives at a word representing
gn which contains blocks of at mosthq consecutive digits±1. Indeed, since
each application of one of these identities reduces the length of the word,
the process of applying the identities has to stop after a finite number of
steps. And, since theλq-CF of x is reduced, there are no blocks of more
thanhq consecutive±1 to the right of the right of part “S Tbm Sδ Ta0 S Ta1”
of the wordgn in (2.5.1).

Henceg x can be written as aλq-CF of the form (2.2.4) without blocks
of more thanhq consecutive digits±1 and with a tail identical to the regular
tail in theλq-CF of x. �

L 2.5.3. -2 Let
[

a0; a1, a2, . . .
]

be an infiniteλq-CF containing noChange -2
blocks of more than hq + 1 consecutive digits±1 and at most one block of
hq + 1 consecutive digits±1 for q ≥ 4 respectively no forbidden digits±1
for q = 3. If the block

[

(±1)hq+1] exists the block has to be the first forbidden
block of theλq-CF and has to be preceded by a digit of alternate sign.

If the first forbidden block starts at ai, i ≥ 1 and its rewriting leads to
a new forbidden block then this forbidden block and its rewritten version
must have the form given in Table1. The new forbidden block will appear
to the right of ai. If the new forbidden block is of the form

[

(±1)hq+1] then
its preceding digit is negative.

P. W.l.o.g. assume, the forbidden block starting atai has positive
digits and henceai−1 , 1. Forq even the forbidden block must have the

-2Lemma leicht umformuliert
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form
[

1hq+1] or
[

1hq,m
]

with m ≥ 2. The rewriting rules in Lemma 11 of
[14] lead to
[

. . . , ai−1, 1
hq+1, ai+hq+1, . . .

]→ [

. . . , ai−1 − 1, (−1)hq−1, ai+hq+1 − 1, . . .
]

and
[

. . . , ai−1, 1
hq,m, ai+hq+1, . . .

]→ [

. . . , ai−1 − 1, (−1)hq,m− 1, ai+hq+1, . . .
]

for m≥ 2. Changingai−1 to ai−1−1 cannot introduce a forbidden block since
ai−1 , 1 and a digitai−1 ≥ 2 cannot follow a block of the from

[

1hq
]

. Hence
any new forbidden block has to start with the digitai+hq+1 − 1 respectively
m− 1. Two cases are possible:

[

ai+hq+1, . . .
]

=
[

2, 1hq−1, l, . . .] respectively
[

m, . . .
]

=
[

2, 1hq−1, l, . . .] with l ≥ 1. This shows that the block
[

ai, . . .
]

must have the form
[

1hq+1, 2, 1hq−1, l
]

respectively
[

1hq, 2, 1hq−1, l
]

with its
rewriting leading to the form as stated in the lemma.

For q odd, q ≥ 5, the forbidden block [ai , . . .] has either the form
[

1hq, 2, 1hq,m
]

with m≥ 2 or the form
[

1hq+1]. Rewriting rules in Lemma 13
of [14] then give
[

. . . , ai−1, 1
hq+1, ai+hq+1, . . .

]→ [

. . . , ai−1 − 1, (−1)hq, ai+hq+1 − 1, . . .
]

and
[

. . . , ai−1, 1
hq, 2, 1hq,m, . . .

]→ [

. . . , ai−1 − 1, (−1)hq,−2, (−1)hq,m− 1, . . .
]

for m≥ 2, and similar arguments as forqeven show that the forbidden block
and the digits following it are either of the form

[

1hq+1] followed by
[

2, 1hq
]

or
[

2, 1hq−1, 2, 1hq, l
]

, l ≥ 2, or
[

1hq, 2, 1h2, 2
]

followed by
[

1hq
]

respectively
[

1hq−1, 2, 1hq, l
]

, l ≥ 2. The rewritten form is the as given in the lemma. For
ai−1 = 2 rewriting cannot lead to a new forbidden block to the left ofai

contradicting otherwise the first forbidden block to start with ai.
The caseq = 3 with forbidden block

[

2, 2n,m
]

, m ≥ 2 andn ∈ Z≥0 can
be handled in complete analogy by using the rewriting rule

[

a, 2, 2n, b
] →

[

a− 1,−2− n, b− 1
]

with a, b , 2. �

P  P 2.5.1. We show first the implication (2)⇒ (1). If
x ∼reg y thenx andy have regularλq-CF’s with the same tail:-3 Change -3

x = [[a0; a1, . . . , am, am+1, . . .]] andy = [[b0; b1, . . . , bn, am+1, . . .]] .

Putg := Ta0 S Ta1 · · · S Tam
(

Tb0 S Tb1 · · · S Tbn
)−1
∈ Gq. Writing x andy in

terms of Möbius transformations as explained in (2.2.4) we find,

g y = g Tb0 S Tb1 · · · S Tbn S Tam+1 · · · 0

= Ta0 S Ta1 · · · S Tam S Tam+1 · · · 0 = x

and hencex andy areGq-equivalent -4 . Change -4
Assume nextx ∼reg r andy ∼reg −r and hencex ∼Gq r andy ∼Gq −r.

SinceRq = Tq rq according to (2.3.2) and−Rq = S Rq according to (2.3.6)
for evenq respectively−Rq = (Tq)hq+1Rq according to (2.3.7) for odd q
obviouslyr ∼Gq −r and hencex ∼Gq y.

-3Formelnummer der Formelzeile entfernt.
-4Formelzeile weggelassen, da sie unsinnig ist.
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To show implication (1)⇒ (2), assume there existsg ∈ Gq with g x= y
with x andy having infinite -5 -6 regularλq-CF’s. Lemma2.5.2shows thatChange -5

Remark -6 g x can be written as an infiniteλq-CF with regular tail satisfying the as-
sumptions of Lemma2.5.3. Using the rewriting rules in Lemmas 11 and 13
of [14] we can recursively rewrite theλq-CF of g x into a regularλq-CF
from the left to the right. We procede to the next forbidden block if rewrit-
ing does not lead to a new forbidden block. Lemma2.5.3implies that a new
forbidden block can only appear to the right of the original one which we
process next. If this rewriting process stops after finitelymany steps then
y = g xandx have the same tail in theirλq-CF’s andx ∼reg y.

Hence assume, the rewriting process has to be repeated againand again.
Then after a sufficiently large but finite number of rewriting steps one ar-
rives at the situation where theλq-CF of g x is regular up to one forbidden
block. Denote thisλq-CF by [a0; a1, . . .] with the remaining forbidden block
starting at digitai, i ≥ 1 and assume w.l.o.g. the forbidden block has positive
digits.

Consider first the caseq even: By Lemma2.5.3 the forbidden block
and the following digits have the form [ai, . . .] = [B0, B1, B2, . . .] with the
block B0 ∈

{[

1hq+1, 2
]

,
[

1hq, 2
]}

and the blocksB j ∈
{[

1hq, 2
]

,
[

1hq−1, 2
]}

, for
all j ≥ 1. Since by assumptionB0 was the last forbidden block in theλq-CF,
necessarilyB j ,

[

1hq, 2
]

. Hence theλq-CF ofg xhas the form

g x=
[

a0; a1, . . . , ai−1, 1
l, 2, 1hq−1, 2

]

with l = hq, hq + 1

where the forbidden block at digitai is underlined, and whose tail, deter-
mining also the tail ofx, is regularλq-CF-equivalent torq. After infinitely
many further rewritings one arrives at the regularλq-CF of y whose tail is
regularλq-CF-equivalent to−rq.

Consider next the caseq ≥ 5 odd: Lemma2.5.3again determines the
form of the forbidden block and the following digits as

[ai , . . .] = [B0, B1, B2, . . .]

with the blockB0 ∈
{[

1hq+1, 2
]

,
[

1hq, 2, 1hq, 2
]}

and the blocks

B j ∈
{

A1 :=
[

1hq, 2
]

,A2 :=
[

1hq−1, 2, 1hq, 2
]}

, j ≥ 1.

Since the blocks
[

A1,A1
]

and
[

A2,A1
]

are forbidden blocks, necessarilyB j =

A2 for all j ≥ 2, since otherwiseB0 would not be the last forbidden block in
theλq-CF ofg x. Hence theλq-CF ofg xhas the form

g x=
[

a0; a1, . . . , ai−1, B0, B1, 1hq−1, 2, 1hq, 2
]

where the forbidden block at digitai is again underlined. As in the previous
case, we findx is regularλq-CF-equivalent torq andy is regularλq-CF-
equivalent to−rq.

-5“Infinite” hinzugefgt.
-6Wie beweise ich den Fall der endlichenΛ-CF’s?
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Consider finally the caseq = 3: Lemma2.5.3gives again the form of
the forbidden block and the following digits as [ai, . . .] = [B0, B1, . . .] with
B0 =

[

2, 2n, 3
]

, n ≥ 0, and the blocksB j ∈
{[

2
]

,
[

3
]}

, j ≥ 1. Since the blocks
[2, 2] and [2, 3] are forbidden, necessarilyB j = [3] for all j ≥ 1. Theλq-CF
of g xhence has the form

g x=
[

a0; a1, . . . , ai−1, 2, 2
n, 3, 3

]

where the forbidden block at digitai is underlined. Againx is regularλq-
CF-equivalent torq andy is regularλq-CF-equivalent to−rq.

�

3. Generating maps for theλq-continued fractions and their duals

Similar to the Gauss continued fractions also theλq-continued fractions
and their duals, which forq = 3 have been introduced by Hurwitz in [8],
can be generated by interval maps with strong ergodic properties like in the
case of the Gauss maps.

3.1. The interval maps fq and f ⋆q . Denote byIq respectivelyIRq the
intervals

(3.1.1) Iq =

[

−
λq

2
,
λq

2

]

respectively IRq =
[

−Rq,Rq

]

with λq as in (2.1.4) andRq = λq + rq as in (2.3.2). Thenearestλq-multiple
map〈·〉q is given by

(3.1.2) 〈·〉q : R→ Z; x 7→ 〈x〉q :=

⌊

x
λq
+

1
2

⌋

where⌊·⌋ is the (modified) floor function

(3.1.3) ⌊x⌋ = n ⇐⇒





n ≤ x < n+ 1 if x > 0 and

n < x ≤ n+ 1 if x ≤ 0.

We also need the map〈·〉⋆q given by

(3.1.4) 〈·〉⋆q : R→ Z; x 7→ 〈x〉⋆q :=






⌊
x
λq
+ 1− Rq

λq

⌋

if x ≥ 0 and
⌊

x
λq
+

Rq

λq

⌋

if x < 0.

The interval mapsfq : Iq → Iq and f ⋆q : IRq → IRq are defined as follows:

fq(x) =






−1
x −

〈
−1
x

〉

q
λq if x ∈ Iq\{0},

0 if x = 0and
(3.1.5)

f ⋆q (y) =






−1
y −

〈
−1
y

〉⋆

q
λq if y ∈ IRq\{0},

0 if y = 0.
(3.1.6)

Project nameλq-continued fractions Version date03.03.2009 Print dateMarch 3, 2009 - 15



16 D. MAYER AND T. MÜHLENBRUCH

3.2. λq-CF’s and their generating interval maps. The mapsfq and
f ⋆q generate the regular respectively dual regularλq-CF’s in the following
sense:

For givenx, y ∈ R the coefficientsai andb1, i ∈ Z≥0 are determined by
the following algorithms:

(0) a0 = 〈x〉q andx1 := x− a0λq ∈ Iq,

(1) a1 =
〈
−1
x1

〉

q
andx2 := −1

x1
− a1λq = fq(x1) ∈ Iq,

( i ) ai =
〈
−1
xi

〉

q
andxi+1 := −1

xi
− aiλq = fq(xi) ∈ Iq,

(⋆) The algorithm terminates ifxi+1 = 0

and

(0) b0 = 〈x〉⋆q andy1 := y− b0λq ∈ IRq,

(1) b1 =
〈
−1
y1

〉⋆

q
andy2 := −1

y1
− b1λq = f ⋆q (y1) ∈ IRq,

( i ) bi =
〈
−1
yi

〉⋆

q
andyi+1 := −1

yi
− biλq = f ⋆q (yi) ∈ IRq,

(⋆) The algorithm terminates ifyi+1 = 0.

By construction the coefficients formλq-CF’s in the sense of (2.2.3):

(3.2.1) x = [a0; a1, a2, . . .] and y = [b0; b1, b2, . . .].

P 3.2.1. The λq-CF of x in (3.2.1) is unique for all x not
in

⋃∞
n=0 f −n

q (±λq

2 ) and regular whereas the one of y is unique for all y<
⋃∞

n=0

(

f ⋆q
)−n

(±rq) and dual regular.

P. A simple calculation shows that the regularλq-CF of all points
x = ± 2

2m−1)λq
, m = 2, 3, . . . and their preimages is not unique. But these

points belong to the preimages of the points±λq

2 On the other hand the dual
λq-CF of the pointsy = ± 1

rq+mλq
, m = 1, 2, . . . and their preimages is not

unique. But these points are all the preimages of the points±rq. �

R 3.2.2. The non-uniqueness of certain finite regularλq-CF’s in
Lemma2.2.2can also be derived from Proposition3.2.1.

3.3. Markov partitions for fq and f ⋆q . Obviously fq is locally expand-
ing, that means

∣
∣
∣ f ′q(x)

∣
∣
∣ > 1 for all x ∈ Iq, if one takes the one-sided deriva-

tives at the points of discontinuity. The same holds true forthe mapf ⋆q for

q odd. Forq even f ⋆q
′(±Rq) = 1 but

∣
∣
∣
∣

(

f ⋆2
q

)′
(y)

∣
∣
∣
∣ > 1 for all y ∈ IRq, and hence

both mapsfq and f ⋆q are locally smooth, expanding maps. Indeed both maps
have the Markov property, that means that they allow for Markov partitions.
To construct these partitions we use the orbits of the boundary points of the
two intervalsIq andIRq respectively the monotonicity intervals of the maps
fq and f ⋆q .
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NEARESTλq-MULTIPLE FRACTIONS 17

Define the orbit ofx under fq respectivelyf ⋆q as

orbit (x) =
{

x, fq(x), f 2
q (x) := fq( fq(x)), f 3

q (x), . . .
}

(3.3.1)

=
{

f n
q (x); n = 0, 1, 2, . . .

}

respectively

orbit⋆ (x) =
{(

f ⋆q
)n

(x); n = 0, 1, 2, . . .
}

.(3.3.2)

The orbits orbit
(

−λq

2

)

and orbit⋆
(

−Rq

)

are both finite. If♯{S} denotes the
cardinality of the setS, we have

♯orbit

(

−
λq

2

)

= ♯orbit⋆
(

−Rq

)

= κq + 1,

as can be seen from the regularλq-CF of −λq

2 in (2.3.1) and the dual reg-

ular λq-CF of −Rq in (2.3.5). We denote the elements of orbit
(

−λq

2

)

by φi

respectively of orbit⋆
(

−Rq

)

by ψi, i = 0, . . . , κq, such that

−Rq = −ψ0 < −
λq

2
= φ0 < ψ1 < φ1 < ψ2 < φ2 < . . .

(3.3.3)

. . . < ψκq−2 < φκq−2 < ψκq−1 < φκq−1 = −
1
λq

< ψκq < φκq = 0

holds. By using the regularλq-CF of−λq

2 and the dual regular−λq-CF ofRq

respectively the order “≺” in §2.4one easily verifies

L 3.3.1. The order in(3.3.3) is achieved for q even by defining

(3.3.4) φi = f i
q

(

−
λq

2

)

and ψi =
(

f ⋆q
)i

(−Rq), 0 ≤ i ≤ h = κq,

respectively for q odd by defining

φ2i = f i
q

(

−
λq

2

)

, φ2i+1 = f h+i+1
q

(

−
λq

2

)

and

(3.3.5)

ψ2i =
(

f ⋆q
)i

(−Rq), ψ2i+1 =
(

f ⋆q
)h+i+1

(−Rq), 0 ≤ i ≤ hq =
κq − 1

2
.

In the caseq = 3 one hasκ3 = 1 andh3 = 0. Therefore

φ0 = −
1
2
, φ1 = 0, ψ0 = −R3 =

1−
√

5
2

andψ1 = R3 − 1 =

√
5− 3
2

.

Define nextφ−i = −φi, 0 ≤ i ≤ κq, respectivelyψ−i = −ψi for 0 ≤ i ≤
κq + 1 with ψκq+1 = 0.

Obviously the intervals

(3.3.6) Φi :=
[

φi−1, φi
]

and Φ−i :=
[

φ−i , φ−(i−1)
]

1 ≤ i ≤ κq
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18 D. MAYER AND T. MÜHLENBRUCH

respectively

(3.3.7) Ψi :=
[

ψi−1, ψi
]

and Ψ−i :=
[

ψ−i , ψ−(i−1)
]

,

1 ≤ i ≤ κq + 1, define Markov partitions of the intervalsIq and IRq: this
means that

⋃

ε=+,−

κq⋃

i=1

Φεi = Iq, Φ◦εi ∩Φ◦δ j = ∅ for εi , δ j

⋃

ε=+,−

κq+1
⋃

i=1

Ψεi = IRq, Ψ◦εi ∩Ψ◦δ j = ∅ for εi , δ j.

whereS◦ denotes the interior of the setS. To get a reasonable symbolic
dynamics for the two mapsfq and f ⋆q we have to construct finer partitions
using the monotonicity intervals of the two maps. Consider first the case

q = 3 such thatλ3 = 1. Define form= 2, 3, 4, . . . the intervalsJm as
(3.3.8)

J2 =

[

−1
2
,−2

5

]

and Jm =

[

− 2
2m− 1

,− 2
2m+ 1

]

, m= 3, 4, . . . ,

and setJ−m := −Jm for m = 2, 3, 4, . . .. Since f3 (J±2) = ∓
[

0, 1
2

]

and
f3(J±m) = I3 for m= 3, 4, . . . the partition satisfies

⋃

ε=+,−

∞⋃

m=2

Jεm = I3 and J◦εm∩ J◦δk = ∅ for εm, δk.

Hence this partition, which we denote byM( f3), is Markovian. The maps
f3
∣
∣
∣
Jm

are monotone withf3
∣
∣
∣
Jm

(x) = −1
x − m and locally invertible with

(

f3
∣
∣
∣
Jm

)−1
(y) = − 1

y+m for y ∈ f3(Jm).
Forq ≥ 4 define intervalsJm, m= 1, 2, . . ., as

J1 =

[

−
λq

2
,− 2

3λq

]

and

Jm =

[

− 2
(2m− 1)λq

,− 2
(2m+ 1)λq

]

, m= 2, 3, . . . ,

(3.3.9)

and setJ−m := −Jm for m ∈ N. For evenq, q ≥ 4, the points in orbit
(

−λq

2

)

do not fall onto a boundary point of any of the intervalsJm, m ∈ N. Indeed
from the regularλq-CF of−λq

2 in (2.3.1) and the order “≺” in §2.4one sees
easily that

−
λq

2
= φ0 < φ1 < . . . < φκq−1 < −

2
3λq

< φκq = 0

with φi = f i
q

(

−λq

2

)

. If we hence define the intervalsJ±1i as

(3.3.10) Jε1i := Jε1 ∩ Φεi for ε = +,−, 1 ≤ i ≤ κq
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NEARESTλq-MULTIPLE FRACTIONS 19

and thereforeJε1i = Φεi for 1 ≤ i ≤ κq − 1 we get the partitionM( fq),
defined as

(3.3.11) Iq =
⋃

ε=+,−





κq⋃

i=1

Jε1i ∪
∞⋃

m=2

Jεm



 ,

which is obviously again Markovian, since

fq
(

Jε1i

)

= Jε1i+1, ε = +,−, i = 1, . . . , κq − 2,

fq
(

Jε1κq−1

)

= Jε1κq ∪
∞⋃

m=2

Jεm, ε = +,− and

fq
(

Jεκq

)

= ε

[

0,
λq

2

]

, ε = +,− respectively

fq
(

Jεm
)

= Iq, ε = +,−, m= 2, 3, . . . .

The mapsfq
∣
∣
∣
Jm

are monotone increasing withfq
∣
∣
∣
Jm

(x) = −1
x − mλq and

(

fq
∣
∣
∣
Jm

)−1
(y) = − 1

y+mλq
for m= ±1,±2,±3, . . ..

Consider next the caseq odd,q ≥ 5. In this case one has, using again
the regularλq-CF of−λq

2 in (2.3.1) and the order “≺” in §2.4,

−
λq

2
= φ0 < φ1 < . . . < φκq−2 < −

2
3λq

< φκq−1 < −
2

5λq
< φκq = 0,

with κq = 2hq + 1 and theφi ’s given in (3.3.5), (3.3.6). Hence forε = +,−
one findsφεi ∈ Jε1 for 1 ≤ i ≤ κq − 2 andφε(κq−1) ∈ Jε2. If we then define for
ε = +,− the intervals

Jε1i := Jε1 ∩Φεi 1 ≤ i ≤ κq − 1 and henceJε1i = Φεi, 1 ≤ i ≤ κq − 2
(3.3.12)

Jε2,i := Jε2 ∩Φεi , i = κq − 1, κq,

we find that the partitionM( fq) defined by

(3.3.13) Iq =
⋃

ε=+,−





κq−1
⋃

i=1

Jε1i ∪
κq⋃

i=κq−1

Jε2i ∪
∞⋃

m=3

Jεm





is Markovian. Indeed forε = +,− one findsfq
(

Φε2i
)

= Φε(2i+2), 1 ≤ i ≤ hq−
2, fq

(

Jε1κq−1

)

= ε
[

0, λq

2

]

, fq
(

Jε2κq−1

)

= ε
[

−λq

2 , φ1

]

, fq
(

Φε(2i−1)
)

= Φε(2i+1)

for 1 ≤ i ≤ h, fq
(

Jε2κq
)

= ε
[

φ1,
λq

2

]

and fq (Jεm) = Iq for m = 3, 4, . . .. The

mapsfq
∣
∣
∣
Jm

are monotone withfq
∣
∣
∣
Jm

(x) = −1
x−mλq and

(

fq
∣
∣
∣
Jm

)−1
(y) = − 1

y−mλq

for m= ±1,±2,±3, . . ..
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20 D. MAYER AND T. MÜHLENBRUCH

Consider next the mapf ⋆q in (3.1.6). In the caseq = 3 andλq = 1 define
the intervalsJ⋆±m, m= 2, 3, . . . as

J⋆m :=

[

−1
rq +m

,
−1

rq +m+ 1

]

respectively

J⋆−m := − J⋆m =

[

1
rq +m+ 1

,
1

rq +m

]

.

(3.3.14)

Since−Rq = − 1
2+rq
= −1+ rq andrq = − 1

3+rq
, see§2.3, we find

(3.3.15)

IRq = [−Rq,Rq] =
⋃

ε=+,−

∞⋃

m=2

J⋆εm with J⋆m
◦ ∩ J⋆n

◦
= ∅ for all m, n.

An easy calculation shows that

f ⋆3
(

J⋆εm
)

= ε[rq,Rq] for all m≥ 2,

where one usesf ⋆3 (−Rq) = rq, limεց0 f ⋆3 (rq+ε) = rq and limεց0 f ⋆3 (rq−ε) =
Rq. Hence the intervals

{

J⋆m
}

define a Markov partitionM( f ⋆q ) and f ⋆3 is a
locally expanding, smooth Markov map.

For evenq define the intervalsJ⋆±m for m ∈ N as

J⋆m :=

[

−1
rq +mλq

,
−1

rq + (m+ 1)λq

]

respectively

J⋆−m := − J⋆m =

[

1
rq + (m+ 1)λq

,
1

rq +mλq

]

.

(3.3.16)

Since according to (2.3.6) Rq = 1 for q even, a simple calculation shows

that f ⋆q (−Rq) = rq = 1− λq. But according to (2.3.2) rq = [[0; (1)h−1, 2]] and

hence
(

f ⋆q
)hq−1

(rq) = [[0; 2, (1)hq−1]]. This with (2.3.5) shows that

(

f ⋆q
)hq

(Rq) =
(

f ⋆q
)hq−1

(rq) = −
1

2λq + rq
.

The order of the pointsψi ∈ orbit⋆
(

−Rq

)

in (3.3.3) is given by

−Rq = ψ0 < ψ1 < . . . < ψκq =
−1

2λq + rq

whereκq = hq by (2.3.3). Henceψi ∈ J⋆1 for 0 ≤ i ≤ κq − 1 whereasψκq is
just the common boundary ofJ⋆1 andJ⋆2 . Define therefore the intervalsJ⋆ε1i

as

(3.3.17) J⋆ε1i
:= J⋆ε1 ∩Ψεi for all 1 ≤ i ≤ κq andε = +,−,

such thatJ⋆ε1 =
⋃κq

i=1 J⋆ε1i
.
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Then the partitionM( f ⋆q ), defined by

(3.3.18) IRq =
⋃

ε=+,−





κq⋃

i=1

J⋆ε1i
∪
∞⋃

m=2

J⋆εm



 ,

is a Markov partition, since

f ⋆q
(

J⋆ε1i

)

= J⋆ε1i+1
for 1 ≤ i ≤ κq − 1,

f ⋆q
(

J⋆ε1κq
)

= ε

[

−1
2λq + rq

,Rq

]

and

f ⋆q
(

J⋆εm
)

= ε
[

rq,Rq

]

for m≥ 2.

The restrictionf ⋆q
∣
∣
∣
J⋆m

of f ⋆q to the intervalJ⋆m is given by

f ⋆q
∣
∣
∣
Jm

(x) =
−1
x
−mλq for m∈ Z,0

and its inverse by
(

f ⋆q
∣
∣
∣
Jm

)−1
(y) =

−1
y+mλq

for y ∈ f ⋆q (Jm).

Remains the caseq odd,q ≥ 5. The intervalsJ⋆εm for ε = +,−, m ≥ 2
are defined as forq even in (3.3.16):

(3.3.19) J⋆m :=

[

−1
rq +mλq

,
−1

rq + (m+ 1)λq

]

and J⋆−m := −J⋆m.

The intervalsJ⋆ε1 are defined as

J⋆1 :=

[

−Rq,
−1

rq + 2λq

]

respectively

J⋆−1 := −J⋆1 =

[

1
rq + 2λq

,Rq

]

.

(3.3.20)

According to (3.3.5)

ψ2hq =
(

f ⋆q
)hq

(−Rq) =
−1

rq + 2λq
= [[0; 2, 1hq, 2, 1hq−1]]⋆

and

ψ2hq+1 = f ⋆q (−Rq) = [[0; 2, 1hq−1, 2, 1hq, 2]]⋆

≤ [[0; 3, 1hq, 2, 1hq−1, 2]]⋆ =
−1

3λq + rq
.

Henceψi ∈ J⋆1 =
[

−Rq,
−1

rq+2λq

]

for 1 ≤ i ≤ 2hq = κq − 1 whereasψ2hq+1 =

ψκq ∈ J⋆2 . Define forε = +,− the intervalsJ⋆ε1i
as

(3.3.21) J⋆ε1i
:= J⋆ε1 ∩Ψεi = Ψεi for 1 ≤ i ≤ κq − 1
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22 D. MAYER AND T. MÜHLENBRUCH

and the intervalsJ⋆ε2i
for i = κq, κq + 1 as

J⋆ε2κq := J⋆ε2 ∩Ψεκq = Ψεκq respectively

J⋆ε2κq+1
:= J⋆ε2 rΨεκq = ε

[

ψκq,
−1

3λq + rq

]

.

Then the partition

(3.3.22) IRq =
⋃

ε=+,−





κq−1
⋃

i=1

J⋆ε1i
∪

κq+1
⋃

i=κq

J⋆ε2i
∪
∞⋃

m=3

J⋆εm





is a Markov partition. This follows from the following identities, which can
be easily verified:

f ⋆q
(

J⋆εm
)

= ε
[

rq,Rq

]

for all m= 3, 4, . . . ,

f ⋆q
(

J⋆ε12i

)

= J⋆ε12i+2
for all1 ≤ i ≤ hq − 1,

f ⋆q
(

J⋆ε12i−1

)

= J⋆ε12i+1
for all 1 ≤ i ≤ hq,

f ⋆q
(

J⋆ε12h

)

= ε
[

ψκq,Rq

]

= J⋆ε2κq+1
∪

⋃

δ=+,−

∞⋃

m=3

J⋆δm ∪ J⋆−ε2m,

f ⋆q
(

J⋆ε2κq
)

= Jε12 and

f ⋆q
(

J⋆ε2κq+1

)

= ε
[

ψ2,Rq

]

=

κq−1
⋃

i=3

Jε1i ∪
κq+1
⋃

i=κq

Jε2i ∪
⋃

δ=+,−

∞⋃

m=3

J⋆δm∪ J−ε2 ∪ J−ε1.

4. The maps fq and f ⋆q and regular respectively dual regularλq-CF’s

We are going to use the Markov partitionsM( fq) respectivelyM( f ⋆q )
constructed in the forgoing section for the mapsfq : Iq→ Iq and f ⋆q : IRq →
IRq to show that these maps can be conjugated to subshifts over infinite
alphabets. By introducing sofic systems closely related to these subshifts
the symbolic dynamics of the above two maps are directly related to the
regular respectively dual regularλq-CF’s.

4.1. Symbolic dynamics for fq and a subshift of infinite type. For
q = 3 and f3 : I3 → I3 let F be the alphabetF = Z r {0,±1}. Define the
transition matrixA =

(

Ai, j

)

i, j∈F
with Ai, j ∈ {0, 1} for ε = +,− as follows:

Aε2,εm = 0, m≥ 2,

Aε2,−εm = 1, m≥ 2,

Aεk,m = 1, k ≥ 3 and allm ∈ F.
(4.1.1)

Denote by (FN
A
, τ) the subshift over the alphabetF with

FN
A
=

{

ξ = (ξi)i∈N, ξi ∈ F,Aξi ,ξi+1 = 1, i ∈ N
}

and
(

τ(ξ)
)

i = ξi+1 the shift map.
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Let ∂M( f3) :=
{

x ∈ Iq : ∃n ∈ Z≥0 : f n
q (x) = 0

}

. The projection map
π : I3 r ∂M( f3)→ FN

A
defined by

π(x) = ξ = (ξi)i∈N if f i−1
3 (x) ∈ Jξi for i ∈ N

is bijective with inverseπ−1(ξ) = x, wherex is the unique point withx ∈
Jξ1 ∩

⋂∞
l=1( fξl ◦ . . . ◦ fξ1)

−1Jξl+1. That the pointx is uniquely defined follows
from the expanding property of the local branchesfJm = f3

∣
∣
∣
Jm

of the mapf3,

given on the intervalJm by fJm = −1
x −m, m ∈ Z r {0,±1}. Obviously one

hasπ ◦ f3 = τ ◦ π on I3 r ∂M( f3).

For q even withq = 2hq + 2 define the alphabetF as F = {ε1i, ε =

+,−, 1 ≤ i ≤ κq} ∪ Z r {0,±1}. The transition matrixA =
(

Ai, j

)

i, j∈F
is

defined in this case as follows:
Aε1l ,ε1l+1 = 1, 1 ≤ l ≤ κq − 1,

Aε1κq−1,εm = 1, m= 2, 3, . . . ,

Aε1κq ,−ε1l = 1, 1 ≤ l ≤ κq,

Aε1κq ,−m = 1, m= 2, 3, . . . ,

Am,n = 1, m∈ Z r {0,±1}, n ∈ F,

(4.1.2)

and all the other matrix elements vanishing.
Define the set∂M( fq) and the mapπ : Iq r ∂M( fq)→ FN

A
in analogy to

the caseq = 3. The same arguments as there show that this map is bijective
and conjugatesfq to the shift mapτ with π ◦ f3 = τ ◦ π on Iq r ∂M( fq).

For q = 2hq + 3 = κq + 1 finally define the alphabetF asF = {ε1i, ε =
+,−, 1 ≤ i ≤ κq−1} ∪ {ε2i, ε = +,−, κq−1 ≤ i ≤ κq} ∪Zr {0,±1,±2}. The
transition matrixA =

(

Ai, j

)

i, j∈F
is given in Table2.

The set∂M( fq) and the mapπ : Iqr∂M( fq)→ FN
A

are defined similarly
as in the foregoing casesq = 3 andq even and have the same properties.
The inverse (π)−1 : FN

A
→ Iq r ∂M( fq) is given byπ−1(ξ) = x with x ∈

Jξ1 ∩
⋂∞

l=1( fξl ◦ . . . ◦ fξ1)
−1Jξl+1 where fξi = f

∣
∣
∣
Jε1

for ξi = ε1l, 1 ≤ l ≤ κq − 1

respectivelyfξi = f
∣
∣
∣
Jε2

for ξi = ε2l, κq ≤ l ≤ κq + 1. Hence also in this

case the mapfq gets conjugated byπ to the shift mapτ on the spaceFN
A

of
symbol sequences and therefore is itself a subshift of infinite type.

4.2. A sofic system related to the mapfq and the regular λq-CF.
The transition matrixA in (4.1.1) for the subshiftf3 : I3 → I3 shows that a
symbol sequencea = (ai)i∈N ∈ FN

A
= π

(

I3r∂M( f3)
)

if and only if (ai, ai+1) ,
(ε2, εm), m ≥ 2 for all i ∈ N. Hence this sequence isq-regular forq = 3
andFN

A
= Areg

3 . The inverse mapπ−1 : FN
A
→ Iq r ∂M( fq) therefore has the

form π−1(a) = [[0; a1, a2, . . .]]. This follows from

L 4.2.1. For a = (ai)i∈N ∈ Areg
3 a 3-regular sequence the limit

limn→∞[[0; a1, a2, . . . , an]] exists and defines a point x∈ R.
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Aε12i ,ε12i+1 = 1 1≤ i ≤ hq − 2,

Aε12hq−2,ε12hq
= 1,

Aε12hq−2,ε2κq = 1,

Aε12hq ,−ε1i = 1 1≤ i ≤ κq − 1,

Aε12hq ,−ε2i = 1 κq ≤ i ≤ κq + 1,

Aε12hq ,−εm = 1 m≥ 3,

Aε12i−1,ε12i+1 = 1, 1 ≤ i ≤ hq − 1,

Aε12hq−1,ε2κq+1 = 1,

Aε12hq−1,−εm = 1, m≥ 3,

Aε2κq ,−ε11 = 1,

Aε2κq+1,δ1i = 1, δ = +,−, 2 ≤ i ≤ κq − 1,

Aε2κq+1,δ2i = 1, δ = +,−, 2 ≤ i ≤ κq − 1,

Aε2κq+1,δn = 1, δ = +,−, n ≥ 3,

Aε2κq+1,−ε11 = 1,

Am,n = 1, m ∈ Z r {0,±1,±2}, n ∈ F,

T 2. The transition matrixA = (Ai, j)i, j∈F with ε = +,−
for q-regular sequences andq odd,q ≥ 5. All other matrix
elements vanish.

P. Set xn := [[0; a1, a2, . . . , an]] and denote byJ(a1,...,an) the closed
interval J(a1,...,an) := Ja1 ∩

⋂n−1
l=1

(

fal ◦ . . . fa1

)−1 Jal+1 with fai := fq
∣
∣
∣
Jai

. Ob-

viously xn ∈ J(a1,...,an). All these intervals are nonempty andJ(a1,...,an+1) ⊂
J(a1,...,an) for all n. Hence

⋂∞
n=1 J(a1,...,an) is not empty. Because the mapf3 is

strictly expanding this set contains exactly one pointx. But this shows that
limn→∞[[0; a1, a2, . . . , an]] = x. �

In the caseq , 3 the relation between the symbolic dynamics with re-
spect to the Markov partitionsM( fq) and theλq-CF is more complicated.
Indeed one has to introduce a corresponding sofic system, namely in the
alphabetF the lettersε1i respectivelyε2i have to be replaced by the let-
tersε1 respectivelyε2 for all i. This corresponds to replacing the Markov
partitionM( fq) defined in Section3.3 by the partitionJ( fq) defined as
Iq =

⋃

ε=+,−
⋃∞

m=1 Jεm with Jm given in (3.3.9). It is not difficult to see that
this partition is generating that means

⋂∞
i=1 f −(i−1)

q Jmi is either empty or con-
sists of exactly one point. This follows again from the fact that all branches
of fq are expanding. Denote by∂J( fq) the boundary points of the intervals
Jm including the pointx = 0 together with all their preimages under the
map fq. Sincex = 0 belongs to the orbit of−λq

2 the boundaries∂M( fq) and
∂J( fq) coincide. Denote by ˆπ : Iqr∂J( fq)→ F̂N with F̂ = Zr {0} the map
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π̂(x) = a = (ai)i∈N when f i−1
q (x) ∈ Jai . If π(x) = ξ, then obviouslyai = m if

ξi = m ∈ Z andai = ε1 if ξi = ε1l for somel respectivelyai = ε2 if ξi = ε2l

for somel. The following Lemma then holds

L 4.2.2. The mapπ̂ : Iq r ∂J( fq) → Areg
q ⊂ F̂N is bijective. The

inverse map̂π−1 : Areg
q → Iq r ∂J( fq) is given byπ̂−1(a) = [[0; a1, a2, . . .]] .

P. Consider firstqeven: From the definition of the transition matrix
A in (4.1.2) for the caseq = 2hq+2 it follows that there cannot be more than
hq consecutive symbolsε1 in a = (ai)i∈N = π̂(x) since (A)ε1κq ,εm = 0 for all
m= 2, 3, . . .: indeedhq consecutive symbolsε1 are only possible for points
x with f i−1

q (x) ∈ Jε1i for i = 1, . . . , κq and f
κq
q ∈ J−ε1l for some 1≤ l ≤ κq

or f
κq
q ∈ J−εm for somem ≥ 2. This shows thata = (ai)i∈N = π̂(x) defines a

q-regular sequence inAreg
q .

Given on the other hand such aq-regular sequencea = (ai)i∈N there
exists a unique pointx ∈ Iqr∂M( fq) with π̂(x) = a: indeed if for somel ≥ 1
andk ≥ 0 one hasal = al+1 = . . . = al+k = ε1 andal+k+1 = m, ε1 consider
the sequenceξ ∈ FN

A
with ξl+k = ε1κq, ξl+k−1 = ε1κq−1, . . . , ξl = ε1κq−l if

sign(m) , ε respectivelyξl+k = ε1κq−1, ξl+k−1 = ε1κq−2, . . ., ξl = ε1κq−l−1 if
sign(m) = ε, whereasξi = ai for all ai , ε1. Sincek ≤ κq − 1 respectively
k ≤ κq − 2 in the second case, the sequenceξ belongs indeed toFN

A
and

hence there exists a pointx ∈ Iq r ∂M( fq) with π(x) = ξ and hence also
π̂(x) = a. The inverse map ˆπ−1 is again given by ˆπ−1(a) = [[0; a1, a2, . . .]].
Since for anya ∈ Areg

q there exists an uniqueξ ∈ FN
A

which is related to
a when replacing the symbols±1i by the symbol±1, there exists therefore
x ∈ Iq r ∂J( fq) with π(x) = ξ. But xn := [[0; a1, a2, . . .an]] ∈ J(ξ1,...,ξn) and
hence limn→∞ xn = x ∈ ⋂∞

n=1 J(ξ1,...,ξn) and hence ˆπ−1(a) = [[0; a1, a2, . . .]].

The same reasoning can be applied in the caseq = 2hq + 3 odd to
show that the map ˆπ : Iq r ∂J( fq) → Areg

q ∈ F̂N is bijective with inverse
π̂−1(a) = [[0; a1, a2, . . .]]. �

4.3. Symbolic dynamics for f ⋆q and a subshift of infinite type. Let
us start again with the caseq = 3 and recall the Markov partitionM( f ⋆q )

defined in (3.3.15) by IRq =
⋃

ε=+,−
⋃∞

m=2 J⋆εm with J⋆εm = ε
[

− 1
r3+m,−

1
r3+m+1

]

.
Denote byF the alphabetF = Zr{0,±1} and byA = (Ai, j)i, j∈F the transition
matrix with

(4.3.1) (A)m,n = 1 for all m, n ∈ F with n , 2 sign(m),

and all the other matrix elements vanishing. Denote by∂M( f ⋆3 ) the set

∂M( f ⋆3 ) =
{

y ∈ IRq : ∃n ∈ Z≥0 with
(

f ⋆3
)n (y) = ±r3 or

(

f ⋆q
)n

(y) = 0
}

and by±r3 the sequence±r3 = (±3). Then one has forf ⋆ξi
:= f ⋆3

∣
∣
∣
J⋆ξi
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L 4.3.1. The map

π : IR3 r ∂M( f ⋆3 )→ FN
A
r

{

ξ ∈ FN
A

: ∃n ∈ Z≥0 : τn(ξ) = ±r3

}

,

given byπ(x) = ξ = (ξi)i∈N if ( f ⋆3 )i−1 ∈ J⋆ξi
for i ∈ N, is bijective, and

π ◦ f ⋆3 = τ ◦ π. Its inverse, the mapπ−1 : FN
A
→ IR3 can be defined on the

entire set FN
A

and is given byπ−1(ξ) = x with x the unique point in IR3 with

x ∈ J⋆ξ1

⋂∞
l=1( f ⋆ξl

◦ . . . ◦ f ⋆ξ1
)−1J⋆ξl+1

.

P. Obviously all the preimages of the pointx = 0 have a finite
symbol sequence (ξ1, . . . , ξN), whereas the points±rq ∈ J⋆±2 ∪ J⋆±3 have the
two different symbol sequencesπ(±rq) = ξ =

( ± 3
)

respectivelyπ(±rq) =
( ± 2,∓3

)

. The same holds then true for all the preimages of these points.
The pointx ∈ IRq is again uniquely determined because of the expansive
nature of the local branches of the mapf ⋆3 . �

The mapf ⋆3 : IRq → IRq is hence a subshift of infinite type.

Consider next the caseq even withq = 2hq + 2 andκq = hq. Recall the
Markov partitionM( f ⋆q ) in (3.3.18). We define the alphabetF as

F =
{

ε1i, ε = +,−, 1 ≤ i ≤ κq

}

∪ Z r {0,±1}

and byA = (Ai, j)i, j∈F the transition matrix with matrix elements

(A)ε1i ,ε1i+1 = 1 for ε = +,−; 1 ≤ i ≤ κq − 1,

(A)ε1κq ,m = 1 for m ∈ F, m, ε1i 1 ≤ i ≤ κq, and

(A)m,n = 1 for |m| ≥ 2 and all n , sign(m)11,

(4.3.2)

whereas all other matrix elements vanish. If we define again∂M( f ⋆q ) by

∂M( f ⋆q ) =
{

y ∈ IRq : ∃n ∈ Z≥0 with ( f ⋆q )n(y) = ±rq or ( f ⋆q )n(y) = 0
}

one shows in complete analogy with Lemma4.3.1.

L 4.3.2. The map

π : IRq rM( f ⋆q )→ FN
A
r

{

ξ ∈ FN
A

: ∃n ∈ Z≥0 : τn(ξ) = ±rq

}

,

given byπ(x) = ξ = (ξi)i∈N if ( f ⋆q )i−1 ∈ J⋆ξi
for i ∈ N, is bijective, and

π ◦ f ⋆q = τ ◦ π. Its inverse, the mapπ−1 : FN
A
→ IRq can be defined on the

entire set FN
A

and is given byπ−1(ξ) = x with x the unique point in IRq with

x ∈ J⋆ξ1

⋂∞
l=1( f ⋆ξl

◦ . . . ◦ f ⋆ξ1
)−1J⋆ξl+1

.

This shows that the mapf ⋆q : IRq → IRq is a subshift of infinite type also
for evenq.
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(A)ε12i−1,ε12i+1 = 1 for 1≤ i ≤ hq − 1,

(A)ε12hq−1,ε2κq = 1

(A)ε12i ,ε12i+2 = 1 for 1≤ i ≤ hq − 1,

(A)ε12hq ,ε2κq+1 = 1

(A)ε12hq ,m = 1 m ∈ Z r {0,±1,±2},
(A)ε12hq ,−2 = 1,

(A)ε2κq ,ε12 = 1,

(A)ε2κq+1,ε1i = 1 for 2≤ i ≤ κq − 1,

(A)ε2κq+1,ε2i = 1 for i = κq, κq + 1,

(A)ε2κq+1,m = 1 for m ∈ Z r {0,±1,±2},
(A)ε2κq+1,−ε1i = 1 for 1≤ i ≤ κq − 1,

(A)ε2κq+1,−ε2i = 1 for i = κq, κq + 1,

(A)εm,ε1i = 1 for 2≤ i ≤ κq − 1, ε = +.−, m∈ N r {0, 1, 2},
(A)εm,−ε11 = 1, ε = +,−,
(A)εm,−ε2i = 1, ε = +,−, I = κq, κq + 1.

T 3. The transition matrixA = (Ai, j)i, j∈F with ε = +,−
for q-dual regular sequences andq odd, q ≥ 5. All other
matrix elements vanish.

Consider finally the caseq = 2hq + 3 andκq = 2hq + 1. The Markov
partitionM( f ⋆q ) was given in this case in (3.3.22). Define the alphabetF as

F =
{

ε1i , ε = +,−, 1 ≤ i ≤ κq − 1
}

∪

∪
{

ε2i , ε = +,−, κq ≤ i ≤ κq + 1
}

∪ Z r {0,±1,±2}.
The transition matrixA = (Ai, j)i, j∈F has now the form given in Table3.

If ∂M( f ⋆q ) denotes again the set of preimages of the pointsx = ±rq and
the pointx = 0 one shows as in the former cases that the map

π : IRq r ∂M( f ⋆q )→ FN
A
r

{

ξ ∈ FN
A

: ∃n ∈ Z≥0 : τn(ξ) = ±rq

}

is bijective and the mapf ⋆q is conjugated therefore onIRq r ∂M( f ⋆q ) to the

shift τ on FN
A
r

{

ξ ∈ FN
A

: ∃n ∈ Z≥0 : τn(ξ) = ±rq

}

.
Hence also in the caseq is odd the mapf ⋆q is conjugate to a subshift of

infinite type.

4.4. A sofic system related tof ⋆q and the dual regular λq-CF. In the
case of the mapf ⋆3 the subshiftτ : FN

A
→ FN

A
can be easily related to the

dualλ3-CF: from the form of the transition matrix (A) in (4.3.1) it follows
that the sequenceb ∈ FN

A
with b = π(x) can be characterized by the fact that
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(bi , bi+1) , (m, 2 sign(m)) for all i ∈ N and henceb ∈ Adreg
q . On the other

hand any such sequenceb ∈ Adreg
3 belongs toFN

A
and defines a unique point

x ∈ IRq throughJ⋆b1

⋂∞
l=1( f ⋆bl

◦ . . . ◦ f ⋆b1
)−1J⋆bl+1

. Sincexn := [[0; b1, . . . , bn]]⋆ ∈
J⋆b1

⋂n
l=1( f ⋆bl

◦ . . . ◦ f ⋆b1
)−1J⋆bl+1

for all n we find limn→∞ xn = x and hence
π−1(b) = [[0; b1, b2, . . . , ]]⋆.

To connect the subshift for the mapf ⋆q in the caseq = 2hq + 2 with the
dualλq-CF one has to introduce the sofic systems by replacing inξ all the
symbols±1i , 1 ≤ i ≤ κq by the symbol±1. This corresponds to replacing
the Markov partitionM( f ⋆q ) by the generating partitionJ( f ⋆q ) determined
by IRq =

⋃

ε=+,−
⋃∞

m=1 J⋆εm with J⋆εm defined in (3.3.16). Denote by∂J( f ⋆q )
the set

∂J( f ⋆q ) =
{

y ∈ IRq, : ∃n ∈ Z≥0 with ( f ⋆q )n(y) = ±rq or ( f ⋆q )n(y) = 0
}

which obviously coincides with the set∂M( f ⋆q ). Then for the alphabet
F̂ = Z r {0} one shows again

L 4.4.1. The map

π̂ : IRq r ∂J( f ⋆q )→ Adreg
q r

{

b ∈ Adreg
q : ∃n ∈ Z≥0 : τn(b) = ±rq

}

⊂ F̂N

defined byπ̂(x) = b = (bi)i∈N if ( f ⋆q )i−1 ∈ J⋆bi
for i ∈ N, is bijective, and

π̂ ◦ f ⋆q = τ ◦ π̂. Its inverse, the map̂π−1 : Adreg
q → IRq can be defined on the

entire setAdreg
q and is given bŷπ−1 : (b) = [[0; b1, b2, . . . , ]]⋆.

P. Since±ψκq = ( f ⋆q )hq−1(±rq) ∈ J⋆±1 ∩ J⋆±2 this point has two dif-

ferent dual regular sequencesb = ±(1, (−1)hq,−2, (−1)hq − 1) respectively

b = ±(1hq−1, 2). Hence also all preimages of this point have two different
dual regular sequences, but these points all have the same tail as the point
±rq. If b = (bi)i∈N = π̂(x) assume thatb contains for somek ≥ 0 and some
l ≥ 0 a subsequencebk+1 = · · · = bk+l = ε1 with eitherk = 0 or bk , ε1
andbk+l+1 , ε1. Then the sequenceξ = (ξi)i∈N related tob by replacing the
symbols±1i by the symbol±1 must be of the formξk+l = ε1κq and hence
ξk+i = ε1κq−(l−i) for 1 ≤ i ≤ l. This shows thatl ≤ κq. The casel = κq

however is only possible if eitherk = 0 or bk = −εm, m ≥ 1. This shows
thatb = π̂(x) ∈ Adreg

q .
Given on the other handb ∈ Adreg

q with a subsequencebk+1 = . . . =
bk+l = ε1 andbk+l+1 , ε1 for somek and somel then define the sequence
ξ such thatξk+i = ε1κq−(l−i), 1 ≤ i ≤ l. Sincel ≤ κq respectivelyl ≤ κq − 1
the sequenceξ belongs toFN

A
and hence there exists a pointx ∈ IRq with

π(x) = ξ and therefore by construction also ˆπ(x) = b. The inverse map ˆπ−1

is obviously defined for allb ∈ Adreg
q . An argument completely analogous

to the one in the caseq = 3 then shows that ˆπ−1(b) = [[0; b1, b2, . . .]]⋆. �
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Introduce finally in the caseq = 2hq+3 for the mapf ⋆q the sofic system
defined by replacing inξ ∈ FN

A
all the symbols±1i by the symbol±1 and

the symbols±2i by the symbol±2. Denote byJ( f ⋆q ) the corresponding
generating partitionIRq =

⋃

ε=+,−
⋃∞

m=1 J⋆εm and by∂J( f ⋆q ) the set of preim-
ages of the pointsx = ±rq andx = 0 which obviously coincides with the set
∂M( f ⋆q ). As in the previous cases one shows also forq = 2hq + 3

L 4.4.2. The map

π̂ : IRq r ∂J( f ⋆q )→ Adreg
q r

{

b ∈ Adreg
q : b has the tail± rq

}

⊂ F̂N

defined byπ̂(x) = b = (bi)i∈N if ( f ⋆q )i−1 ∈ J⋆bi
for i ∈ N, is bijective and

π̂ ◦ f ⋆q = τ ◦ π̂. Its inverse, the map̂π−1 : Adreg
q → IRq can be defined on the

entire setAdreg
q and is given bŷπ−1 : (b) = [[0; b1, b2, . . .]]⋆.

P. From the form of the transition matrixA in Table3 it is clear that
there are only restrictions on the symbol sequenceb for b = (bi)i∈N = π̂(x) if
it contains subsequences of consecutive symbols±1 since (A)i, j = 1 for all
j ∈ F if |i| ≥ 3. Assumebk = m, 1 andbk+1 = . . . = bk+l = ±1, bk+l+1 , ±1
for somek ≥ 0 and somel ≥ 1, wherek = 0 means thatb1 = ±1. Then
either (f ⋆q )k+l−1(x) ∈ J⋆±12hq−1

or ( f ⋆q )k+l−1(x) ∈ J⋆±12hq
and henceξk+l = ±12hq−1

or ξk+l = ±12hq. In the first caseξk+i = ±12hq−2(l−i)−1, 1 ≤ i ≤ l and hence
ξk+1 = ±12hq−(2l−1). If m = ±n for somen ≥ 3 then necessarilyl ≤ hq − 1
since (A)m,±11 = 0 for all m∈ F. If on the other handm= ∓n for somen ≥ 3
or k = 0 thenl ≤ hq with l = hq iff ξk+1 = ±11. In the case (f ⋆q )(x) ∈ J⋆±12hq

we find ξk+i = ±12hq−2(l−i), 1 ≤ i ≤ l and henceξk+1 = ±12+2(hq−l). This
shows that also in this casel ≤ hq. In the symbol sequenceb there can
appear therefore no subsequence of more thanhq consecutive symbols±1.

Assume next that there exists inb a subsequence ofhq consecutive sym-
bols ±1 such thatbk+1 = . . . = bk+hq = ±1 andbk+hq+1 ,= ±1. Then
eitherk = 0, that meansbk+1 = b1, or bk = ∓n for somen , 1. Then
( f ⋆q )k+hq−1(x) ∈ J⋆±12hq−1

or ( f ⋆q )k+hq−1(x) ∈ J⋆±12hq
and henceξk+hq = ±12hq−1

respectivelyξk+hq = ±12hq. The transition matrixA in Table3 then shows
that in the first caseξk+hq+1 = ±2κq and in the second case

ξk+hq+1 ∈
{

n ∈ F, n , ±1i , 1 ≤ i ≤ κq − 1, n , ±2κq

}

.

If ξk+hq+1 = ±2κq thenξk+hq+1+i = ±12i for 1 ≤ i ≤ hq and henceξk+2hq+1 =

±12hq.
If in the second caseξk+hq+1 = ±2κq+1 then the maximal number of con-

secutive symbols±1 in b is hq − 1 since in this caseξk+hq+2 = ±1i for
somei ≥ 3 and only fori = 3 one hasξk+2hq = ±12hq−1. In all other
cases whenbk+hq+1 , ±2 the number of consecutive symbols±1 is cer-
tainly bounded byhq. This shows that in the sequenceb = π̂(x) the subse-
quence (±m, (±1)hq,±2, (±1)hq,±2) and the subsequence (±1)hq+1 cannot ap-

pear. Henceb = π̂(x) ∈ Adreg
q . Since also in this case to everyb ∈ Adreg

q
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there exist a uniqueξ ∈ FN
A

which is related tob by replacing the symbols
±1i respectively the symbols±2i by the symbols±1 respectively±2, the
same arguments as in the previous cases apply to show, that the inverse map
π̂−1 is given byπ̂−1(b) = [[0; b1, b2, . . .]]⋆. �

4.5. Symbolic dynamics and the natural extensionFq of the map fq.
Consider the mapsfq and f ⋆q . Since

fq
(

[[0; a1, a2, a3, a4, . . .]]
)

= [[0; a2, a3, a4, . . .]] and

f ⋆q
(

[[0; a0, a−1, a−2, a−3, . . .]]
⋆) = [[0; a−1, a−2, a−3, . . .]]

⋆,

fq and f ⋆q are equivalent to the shift mapτ on one sided infinite sequences

a> := (ai)i∈N ∈ Areg
q respectivelya< := (ai)i∈Z≤0 ∈ A

dreg
q . Denote byAq the

set of two-sided infinite sequences

Aq =
{

a = (ai)i∈Z : ∀l ∈ Z, ∀k > 0 : (al , al+1, . . . , al+k) < Bq

}

,

whereBq was defined in (2.2.2). The natural extension of the one-sided
shift mapτ is the two-sided shiftτ : Aq→ Aq with

(

τ(a)
)

i = ai+1, i ∈ Z respectively its inverse
(

τ−1(a)
)

i = ai−1, i ∈ Z if a = (ai)i∈Z.
(4.5.1)

The natural extensionFq of the mapfq respectively its inverseF−1
q can

then be identified simply with the corresponding induced maps on pairs of
points (x, y) with regular respectively dual regularλq-CF

x = [[0; a1, a2, a3, a4, . . .]] andy = [[0; a0, a−1, a−2, a−3, a−4, . . .]]
⋆,

as long as the two-sided sequencea = (ai)i∈Z belongs toAq. Then,Fq and
F−1

q satisfy

Fq
(

[[0; a1, a2, . . .]] , [[0; a0, . . .]]
⋆) =

(

[[0; a2, . . .]] , [[0; a1, a0, . . .]]
⋆) and

F⋆
q

(

[[0; a1, . . .]] , [[0; a0, a−1, . . .]]
⋆) =

(

[[0; a0, a1, . . .]] , [[0; a−1, . . .]]
⋆).

(4.5.2)

To characterize the setΩq of pairs (x, y) with the above property, define in
a first stepI⋆q := Iq r

{

x has a finite regularλq −CF
}

. ObviouslyI⋆q has full
measure. Denote next byΠ1 : Aq→ I⋆q the map

(4.5.3) Π1(. . . , a−1, a0; a1, a2, a3 . . .) = [[0; a1, a2, a3, . . .]] .

By construction the following lemma holds.

L 4.5.1. The mapΠ1 is surjective and satisfiesΠ1 ◦ fq = τ ◦Π1.

Next, defineI⋆Rq
:= IRq r

{

y has a finite dual regularλq-CF
}

which has
full measure. Similar to (4.5.3) the mapΠ2 : Aq→ I⋆Rq

given by

(4.5.4) Π2
(

. . . , a−2, a−1, a0; a1, . . .
)

= [[0; a0, a−1, a−2, . . .]]
⋆.
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is well defined, surjective and satisfiesΠ2 ◦ f ⋆q = τ
−1 ◦ Π2. The following

Lemma characterizes the domain of definitionΩq of the natural extension
Fq:

L 4.5.2. For a ∈ Aq we have

Π2(a) ∈ ±
[

ψκq−i+1,Rq

]

if Π1(a) ∈ ±Φi = ±
[

φi−1, φi
]

, i ∈ {1, . . . , κq}.

The setΩq ⊂ Iq × IRq hence is given by

Ωq =

κq⋃

i=1

([

φi−1, φi
] × [

ψκq−i+1,Rq
]) ∪

([ − φi,−φi−1
] × [ − Rq,−ψκq−i+1

])

.

P. W.l.o.g. assumeΠ1(a) ∈ Φi ⊂ Iq whereΦi is defined in (3.3.6).
Forq even Lemma3.3.1and theλq-CF of−λ2 in (2.3.1) show

[[0; (1)hq−i+1]] � Π1(a) � [[0; (1)hq−i]] .

HenceΠ1(a) has aλq-CF of the formΠ1(a) = [[0; (1)hq−i ,m, . . .]] for some
m≥ 2. Sincea is q-regular we have

a =
(

. . . , a−i−1, a−i, a−i+1, . . . , a0; (1)hq−i ,m, ahq−i+2, . . .
)

with at mosti − 1 consecutive 1’s in the sequence
(

a−i+2, . . . , a0
)

. The point
Π2(a) hence is bounded by the largest and smallest number whose dual
regularλq-CF starts with at mosti − 1 consecutive 1’s and hence

[[0; (1)i−1, 2, (1)hq−i , 2]]⋆ � Π2(a) � [[0; (−1)hq,−2, (−1)hq−1,−2]]⋆.

But (3.3.4) and (2.3.5) show that these bounds are justψκq−i+1 andRq.

The caseq odd,q ≥ 5, is slightly more complicated. First, assumei to
be even and putj = i

2. Then by Lemma3.3.1and theλq-CF of−λ2 in (2.3.1)

Π1(a) ∈ Φ2 j =
[

[[0; (1)hq− j+1]] , [[0; (1)hq− j , 2, (1)hq]]
]

.

HenceΠ1(a) has aλq-CF of the formΠ1(a) = [[0; (1)hq− j , 2, (1)hq,m, . . .]] for
somem≥ 2. Sincea ∈ Aq the sequence (a− j+1, . . . , a0) in

a =
(

. . . , a− j, a− j+1, . . . , a0; (1)hq− j , 2, (1)hq,m, a2hq− j+2, . . .
)

cannot contain more thanj−1 consecutive digits 1. HenceΠ2(a) is bounded
by the points

[[0; (1) j−1, 2, (1)h, 2, (1)h−1, 2]]⋆

� Π2(A) � [[0; (−1)h,−2, (−1)h,−2, (−1)h−1,−2]]⋆.

which by Lemma3.3.1and (2.3.5) are justψκq−2 j+1 andRq.
Next, consider the casei odd and putj = i−1

2 for 1 ≤ i ≤ hq. Again, by
Lemma3.3.1and (2.3.5)

Π1(a) ∈ Φ2 j+1 =
[

[[0; (1)hq− j , 2, (1)hq]] , [[0; (1)hq− j]]
]

,
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and thereforeΠ1(a) has aλq-CF of the formΠ1(a) = [[0; (1)hq− j ,m, . . .]] for
somem≥ 2. Hence there is again a restriction on the sequencea:

a =
(

. . . , a−h− j−1, a−h− j, . . . , a0; (1)h− j,m
︸                      ︷︷                      ︸

not a forbidden block

, ah− j+1, . . .
)

,

and thereforeΠ2(a) is bounded by

[[0; (1) j , 2, (1)hq−1, 2, (1)hq, 2]]⋆ � Π2(A)

� [[0; (−1)hq,−2, [0; (−1)hq,−2, (−1)hq,−2, (−1)hq−1,−2]]⋆,

which by Lemma3.3.1and (2.3.1) respectively (2.3.5) are justψκq−2 j and
Rq .

Finally for q = 3 Lemma3.3.1and (2.3.5) show [[0; 2]]� Π1(a) ≺ [[0; ]] ,
and thereforeΠ1(a) has aλq-CF of the formΠ1(a) = [[0; m, . . .]] for some
m ≥ 2. HenceΠ2(a) must not have a leading digit 2. This implies the
boundsr3 = [0; 3] � Π2(a) � [0;−2,−3] = R3.

The caseΠ1(a) ∈ Φ−i for some 1≤ i ≤ κq follows from Π1(−a) =
−Π1(a). �

Recall the definition of the domainΩq in Lemma4.5.2and define the
setΩ⋆q = Ωq ∩ (I⋆q × I⋆Rq

), which obviously is dense inΩq. Then one has

L 4.5.3. The mapΠ : Aq → Ω⋆q with Π(a) =
(

Π1(a),Π2(a)
)

is a
bijection.

For Fq : Ω⋆q → Ω⋆q and F−1
q : Ω⋆q → Ω⋆q given by(4.5.2) the diagrams

Aq
τ−→ Aq

Π ↓ ↓ Π
Ω⋆q

Fq−→ Ω⋆q

and
Aq

τ−1

−→ Aq

Π ↓ ↓ Π

Ω⋆q

F−1
q−→ Ω⋆q

commute.

P. Obviously, the mapΠ is well defined. Commutativity of the
diagrams follows from combining Lemma4.5.1and

Π2
(

τ(a)
)

= Π2
(

τ(. . . , a−1, a0; a1, a2, . . .)
)

= Π2
(

. . . , a−1, a0, a1; a2, . . .
)

= [[0; a1, a0, a−1, . . .]]
⋆ =

−1
[[a0, a−1, . . .]]⋆ + a1λq

=
−1

Π2(a) + a1λq

respectively

Π1
(

τ−1(a)
)

= Π1
(

τ−1(. . . , a−1, a0; a1, . . .)
)

= Π1
(

. . . , a−1; a0, a1, . . .
)

= [[0; a0, a1, a2, . . .]] =
−1

[[a1, a2, . . .]] + a0λq
=

−1
Π1(a) + a0λq

.

Since the mapΠ : Aq→ Ω⋆q is obviously injective we only need to show
Π(A) = Ω⋆q . For this take (x, y) ∈ Ω⋆q with

x = [[0; a1, a2, a3, . . .]] and y = [[0; a0, a−1, a−2, . . .]]
⋆.
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If ( x, y) ∈
(

[φi−1, φi] ∩ I⋆q
)

×
(

[ψκq−i+1, ψ0] ∩ I⋆Rq

)

for somei ∈ {1, . . . , κq} the

definitions ofφi andψi as elements of orbit
(

−λq

2

)

and orbit
(

−Rq

)

respec-
tively imply that the bi-infinite sequence

a :=
(

. . . , a−2, a−1, a0; a1, a2, a3, . . .
)

does not contain forbidden blocks, and hencea ∈ Aq. �

It is well known that the mapΠ : Aq → R2 is continuous (see for in-
stance [18]) whenAq is equipped with the usual metric of the shift space.

5. Some applications

5.1. Reduced geodesics onGq\H and the natural extension of fq.
The Poincaré upper half-plane, equipped with the hyperbolic metric ds2 =
dx2+dy2

y2 , is denoted byH = {z ∈ C; Im (z) > 0}. The group of isometries of
this space is given by PSL(2,R). The boundary ofH is the projective line
P

1
R
.
We consider oriented geodesics onH. Geodesic lines onH are half-

circles perpendicular toR or straight lines parallel to the imaginary axis
Re(z) = 0. An oriented geodesicω on H will be represented by the two
base pointsω−, ω+ ∈ R∪ {i∞} with its orientation fromω− towardsω+. We
denote such a geodesic byω = (ω−, ω+).

We call two oriented geodesicsω andυ Gq-equivalentif there exists an
elementg ∈ Gq with gω− = υ− andgω+ = υ+.

Then one can show

T 5.1.1. Let ω = (ω−, ω+) be a geodesic withω− having an
infinite regular respectivelyω+ having an infinite dual regularλq-CF. Then
there exist a geodesicω′ = (ω′−, ω

′
+) such that

• ω andω′ are Gq-equivalent and
• (

Sω′+,−ω′−
) ∈ Ωq.

P. We prove the Theorem first forq ≥ 4. Using translations by
powers ofTq we may assume that forω = (ω−, ω+) either

• ω+ > 0 andω− ∈
[

−Rq,−rq

]

⊂ IRq or

• ω+ < 0 andω− ∈
[

rq,Rq

]

⊂ IRq.

Assumeω+ > 0 andω− ∈
[

−Rq,−rq

]

with infinite λq-CF’s

(5.1.1) ω+ = [[a0; a1, a2, . . .]] and ω− = [[0; b1, b2, . . .]]
⋆.

For x = Sω+ andy = −ω− we have

x =






[0; a0, a1, a2, . . .] if a0 , 0,

[[a1; a2 . . .]] if a0 = 0 and
(5.1.2)

y = [[0; −b1,−b2, . . .]]
⋆.
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The following three cases have to be discussed: “a0 ≥ 2”, “a0 = 1” and
“a0 = 0”.

If a0 ≥ 2 thenω+ ≥ 2λ − λ
2 and theλq-CF of x in (5.1.2) is regular. If

the two-sided sequence

(5.1.3) a :=
(

. . . ,−b2,−b1; a0, a1, . . .
)

belongs toAq then by Lemma4.5.3
(

Sω+,−ω−
)

= (x, y) = Π(a) ∈ Ω⋆q ⊂
Ωq .

Assume thereforea < Aq. The forbidden block must appear around “;”
in (5.1.3). This can only happen forq even if

(−bhq, . . .−b1
)

=
(

1hq
)

respec-
tively for q odd if

(−b2hq+1, . . .−b1
)

=
(

1hq, 2, 1hq
)

. Using the lexicographic
order “≺” in Section2.4we find

− ω− = [[0; −b1,−b2, . . .]]
⋆ =






[[0; 1hq, . . .]]⋆ for q even and

[[0; 1hq, 2, 1hq, . . .]]⋆ for q odd

≺





[[0; (1)hq−1, 2]] for q even and

[[0; (1)hq, 2, (1)hq−1, 2]] for q odd,q ≥ 5.
= rq.

Then Lemma2.4.2implies [[0;−b1,−b2, . . .]]⋆ < rq.
On the other hand,−ω− ∈

[

rq,Rq

]

implies−ω− ≥ rq. This leads to a
contradiction.

If a0 = 0 thenω+ ∈
(

0, λq

2

]

⊂
(

0, 2
λq

)

. Hencea1 < 0 in the λq-CF

(5.1.1). For m ∈ Z≥2 the sequence
( − m, a1, a2, . . .

)

is q-regular and also
( −m, b1, b2, . . .

)

is dualq-regular, sincerq ≤ −ω− implies

rq =






[[0; (1)hq−1, 2]]⋆ if q is even and

[[0; (1)hq, 2, (1)hq−1, 2]]⋆ if q is odd.

� [[0; −b1,−b2, . . .]]
⋆ = −ω−.

Forg := S T−m
q define

(

ω′−, ω
′
+

)

= ω′ := g ω with

ω′+ = [[0; −m, a1, a2, . . .]] > 0 and

ω′− = [[0; −m, b1, b2, . . .]]
⋆ ∈ (0,−rq] ⊂ [rq,Rq].

The corresponding bi-infinite sequencea′ :=
(

. . . ,−b1,m;−m, a1, . . .
)

is
thenq-regular and Lemma4.5.3hence implies

(

Sω′+,−ω′−
)

= Π(a′) ∈ Ω⋆q ⊂
Ωq.

Fora0 = 1

ω+ ≥ λq −
λq

2
=






[[1; (1)hq]] for q even,

[[1; (1)hq, 2, (1)hq]] for q odd and

−Rq ≤ ω− ≤ −rq =






[[0; (−1)hq−1,−2]]⋆ for q even,

[[0; (−1)hq,−2, (−1)hq−1,−2]]⋆ for q odd.
(5.1.4)
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Then the dual regularλq-CF ofy cannot start forq even with a block of the
form

(

1hq
)

respectively forq odd
(

1hq, 2, 1hq
)

.
Assumea < Aq, with a defined as in (5.1.3). Then a block of the form

(

1l; 1, 1t) with 0 ≤ l ≤ h and 0 ≤ t ≤ h must exist around the “;” ina
such thatat+1 , 1, −bl+1 , 1. As in the casea0 = 0, choose anm ∈
Z r {−2,−1, 0, 1} with (m+ 1, a1, a2, . . .) beingq-regular and (m, b1, b2, . . .)
being dualq-regular: indeed anym with sign(m) = −sign(b1) can be used.
Defineg := S Tm

q and
(

ω′−, ω
′
+

)

= ω′ := g ω with

ω′+ = [[0; m+ 1, a1, a2, . . .]](5.1.5)

ω′− = [[0; m, b1, b2, . . .]]
⋆ ∈

[

rq,−rq

]

.

Then the bi-infinite sequencea′ :=
(

. . . ,−b2,−b1,−m; m+ 1, a1, a2, . . .
)

is
q-regular and by Lemma4.5.3

(

Sω′+,−ω′−
)

= Π(a′) ∈ Ωq.

The caseω+ < 0 andω− ∈
[

rq,Rq

]

⊂ IRq can be treated in the same way.

The proof forq = 3 is similar to the caseq ≥ 4, however there are the
four casesa0 ≥ 3, a0 = 2, a0 = 1 anda0 = 0 to be considered.

If a0 ≥ 3 then we can argue as in the casea0 ≥ 2 before. Since
ω− < −r3 = [[0; −3]]⋆, the bi-infinite sequencea in (5.1.3) is q-regular
and (Sω+,−ω−) = (x, y) = Π(a) ∈ Ωq.

The casesa0 = 2 anda0 = 1 are similar to the casea0 = 1 for q ≥ 4:
we just take the integer|m| ≥ 5 with m b1 < 0. Thenω′ is defined as
(

ω′−, ω
′
+

)

= ω′ := g ω with g := S Tm and hence

ω′+ =






[[0; m+ 2, a1, a2, . . .]] if a0 = 2 and

[[0; m+ 1, a1, a2, . . .]] if a0 = 1,

ω′− = [[0; m, b1, b2, . . .]]
⋆ ∈ [r3,−r3] .

The casea0 = 0 is similar to the casea0 = 0 for q ≥ 4, if we choose
there the integerm≥ 3 and recallr3 = [[0; 3]] in (2.3.2). �

5.2. The transfer operator for Gq. The authors of [14] have con-
structed a Poincaré sectionΣ for the geodesic flowΦt : S1 Gq\H→ S1 Gq\H
on the Hecke surfacesGq\H for which the Poincaré mapP: Σ→ Σ is basi-
cally given by the natural extensionFq of the mapfq : Iq → Iq. The periodic
orbits of this geodesic flow can therefore be characterized by the periodic
orbits ofFq and therefore also by the periodic orbits of the mapfq respec-
tively its periodic points which determine the ones ofFq uniquely. Indeed,
Theorem2.5.1implies an almost one-to-one correspondence between the
periodic orbits of the geodesic flow on the Hecke surfacesGq\H and the pe-
riodic orbits of the mapfq, only the periodic orbits of the pointsrq and−rq

which are not equivalent under the mapfq lead to the same periodic orbit of
the geodesic flow since these points areGq-equivalent. This shows already
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that the Selberg zeta functionZGq for the Hecke triangle groups defined as

ZGq(β) =
∞∏

k=0

∏

γ prime

(

1− e−(β+k)l(γ)
)

,

where the product is over the prime periodic orbitsγ of the geodesic flow
andl(γ) denotes its period (and hence the length of the corresponding closed
geodesic), cannot be expressed in terms of the transfer operator for the map
fq alone. Indeed, to relate the above Selberg zeta function to the Poincaré
mapP one uses the following Lemma by Ruelle [17]:

L 5.2.1. ZGq(β) =
∞∏

k=0

e−
∑∞

n=1
1
nZn(β+k) for Re(β) > 1 where Zn(β) is

the so called partition function Zn(β) =
∑

x∈FixPn e−β
∑∞

l=0 r
(

Pl (x)
)

and r: Σ →
R
+ denotes the recurrence time of the geodesic flow with respectto the

Poincaré sectionΣ.

In the transfer operator approach to the dynamical zeta functions the
partition functionsZn(β) get expressed in terms of the traces of an oper-
ator constructed from the Poincaré mapP: Σ → Σ respectively its re-
striction to the unstable directions. In our case the unstable direction is
one-dimensional and the restriction ofP to it is basically just the map
fq : Iq → Iq. On the other hand one knows that the recurrence time
r : Σ → R+ in our case is given byr(x) = log

∣
∣
∣ f ′q(x)

∣
∣
∣. The Ruelle trans-

fer operatorLβ then has the following form

(5.2.1) Lβg(x) =
∑

y∈ f −1
q (x)

e−β r(y) g(y)

whereg: Iq → C is some complex valued function and Re(β) > 1 to en-
sure convergence of the series. To get an explicit form for the operator
Lβ one has to determine the preimagesy of any point x ∈ Iq. For this
recall the Markov partitionIq =

⋃

i∈Aκq Φi with Aκq = {±1, . . . ,±κq} in
(3.3.6), determined by the intervalsΦi, and the local inversesϑ±m(x) :=
(

fq
∣
∣
∣
J±m

)−1
(x) = −1

x±mλq
on the intervalsJ±m, 1 ≤ m ≤ ∞, respectively 2≤

m ≤ ∞ for q = 3, defined in§3.3. For 1 ≤ i ≤ κq denote byNi the
setNi :=

{

n ∈ Z r {0} such that there existsj ∈ Aκq with ϑn(Φi) ⊂ Φ j

}

. But

thenNi =
⋃

j∈Aκq Ni, j with Ni, j :=
{

n ∈ Z r {0} such thatϑn(Φi) ⊂ Φ j

}

. Us-
ing these sets we can rewrite the transfer operatorLβ in (5.2.1) as

(5.2.2) Lβg(x) =
∑

i∈Aκq

χΦi (x)
∑

n∈Ni

(

ϑ′n(x)
)β g(ϑn(x)),
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with χΦi the characteristic function of the setΦi. With gi := g
∣
∣
∣
Φi

this can be
written also as follows

(5.2.3) (Lβg)i(x) =
∑

j∈Aκq

∑

n∈Ni, j

(

ϑ′n(x)
)β g j(ϑn(x)), x ∈ I i .

Thereby we used the Markov property of the partitionIq =
⋃

i∈Aκq Φi. If
gi is continuous onΦi for all i ∈ Aκq then also (Lβg)i is continuous on
Φi, that meansLβ maps piecewise continuous functions to piecewise con-
tinuous functions. Unfortunately on the Banach spaceB = ⊕i∈AκqC(Φi) of
piecewise continuous functions the operatorLβ is not trace class, it is even
not compact. Much better spectral properties however can beachieved by
definingLβ on a space of piecewise holomorphic functions. This is possible
since all the mapsϑ±m, m ≥ 1 have holomorphic extensions to a complex
neighbourhood ofIq. Indeed one shows

L 5.2.2. There exist open discs Di ⊂ C, i ∈ Aκq withΦi ⊂ Di such

that for all n ∈ Ni, j we haveϑn(Di) ⊂ D j
-7 . Change -7

Consider therefore the Banach spaceB = ⊕i∈Aκq B(Di) with B(Di) the
Banach space of holomorphic functions on the discDi with the sup norm.
On this space the transfer operatorLβ has the form

(5.2.4) (Lβg)i(z) =
∑

j∈Aκq

∑

n∈Ni, j

(

1
z+ nλq

)2β

g j

(

−1
z+ nλq

)

, z ∈ Di

which is well defined for Re(β) > 1
2. In a forthcoming paper we will discuss

the spectral properties of this operator and its relation tothe Selberg zeta
function for the Hecke triangle groupsGq. Here we give the explicit form
of this operator for the caseq = 3 andq = 4.

For q = 3 one hasκ3 = 1 and thereforeAκ3 = {±1}. The index sets
Ni, j, i, j ∈ Aκ3 are given byN1,1 = Z≥3, N1,−1 = Z≤−2, N−1,1 = Z≥2 and
N−1,−1 = Z≤−3.

For q = 4 one has alsoκ4 = 1 and henceAκ4 = {±1}. The index
setsNi, j, i, j ∈ Aκ4 are given byN1,1 = Z≥2, N1,−1 = Z≤−1, N−1,1 = Z≥1

andN−1,−1 = Z≤−2. This leads in these two cases to the following transfer

-7Changedϑn(Di) ⊂ D j to ϑn(Di) ⊂ D j
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operators

(Lβg)1(z) =
∞∑

n=3 (2)

(

1
z+ nλq

)2β

g1

(

−1
z+ nλq

)

+

∞∑

n=2 (1)

(

1
z− nλq

)2β

g−1

(

−1
z− nλq

)

, z ∈ D1,

(Lβg)−1(z) =
∞∑

n=2 (1)

(

1
z+ nλq

)2β

g1

(

−1
z+ nλq

)

+

∞∑

n=3 (2)

(

1
z− nλq

)2β

g−1

(

−1
z− nλq

)

, z ∈ D2

(5.2.5)

whereλ3 = 1 andλ4 =
√

2 and the summation index in brackets belongs
to the caseq = 4. For q = 3, 4 the discsDi , i = ±1 can be taken as

D±1 = ±
{

z ∈ C;
∣
∣
∣
∣z−

(
λq−2

4

)∣∣
∣
∣ <

λq+2
4

}

.

For q = 3 this operator and its eigenfunctions with eigenvalueρ = 1
have been discussed in [3] where it was shown that these eigenfunctions are
directly related to the eigenfunctions with eigenvaluesρ = ±1 of the transfer
operator for the modular groupG3 derived from a symbolic dynamics for
the geodesic flow using the Gauss continued fractions in [12].

6. λq-CF’s and Rosenλ-fractions

6.1. Regularλq-CF’s and reduced Rosenλ-fractions (q ≥ 4). In [21]
Rosen discussed continued fractions of the form

(6.1.1) [r0; (ε1 : r1), (ε2 : r2), (ε3 : r3), . . .] = r0λq +
ε1

r1λq +
ε2

r2λq+
ε3

r3λq+...

with r0 ∈ Z andεi = ±1, r i ≥ 1 for i ∈ N. We call such expansionsRosen
λ-fraction.

Rosenλ-fractions andλq-CF’s can easily be transformed into each other
using the relations

[r0; (ε1 : r1), (ε2 : r2), (ε3 : r3), . . .](6.1.2)

= r0λq +
ε1

r1λq +
ε2

r2λq+
ε3

r3λq+...

= r0λq +
−1

−ε1r1λq +
−1

ε1ε2r2λq+
−1

−ε1ε2ε3r3λq+...

= [r0;−ε1 r1, ε1ε2 r2,−ε1ε2ε3 r3, . . . , (−1)i ε1 · · · εi r i, . . .]
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and

[a0; a1, a2, a3, . . .] = a0λq +
−1

a1λq +
−1

a2λq+
−1

a3λq+...

(6.1.3)

= a0λq +
−sign(a1)

|a1|λq +
−sign(a1)sign(a2)

a2λq+
−sign(a2)sign(a3)

a3λq+...

= [a0; (−sign(a1) : |a1|), (−sign(a1)sign(a2) : |a2|),
(−sign(a2)sign(a3) : |a3|), . . .].

As claimed in [14, Remark 15] these relations imply directly

L 6.1.1.Given a Rosenλ-fraction [r0; . . . , (εi : r i), (εi+1 : r i+1), . . .]
and its correspondingλq-CF [r0; . . . , ai, ai+1, . . .] in (6.1.3) we have

ε1 = −sign(a1) and εi+1 = −sign(ai ai+1), (i ∈ N).

P. Equation6.1.2shows that the sign of thei th digit (−1)i ε1 · · · εi r i

in the formalλq-CF is determined by (−1)i ε1 · · · εi. Hence, the ratio

(−1)i+1 ε1 · · · εiεi+1

(−1)i ε1 · · · εi
= −εi+1

determines whetherai andai+1 have the same or opposite signs. �

Equations (6.1.2) and (6.1.3) indeed relate regularλq-CF’s and reduced
Rosenλ-fractions as we show next. Set

(6.1.4) hR = hRosen:=

⌊

q− 3
2

⌋

=






hq − 1 if q is even and

hq if q is odd.

The abovehR coincides with “h” used in [21, above Definition 1]. Recall
from [21, Page 555]

D 6.1.2 (Reduced Rosenλ-fractions). The Rosenλ-fraction in
(6.1.1) is calledreducedif it satisfies the following conditions:

(1) Blocks of the form

(∗ : 1), (−1 : 1), . . . , (−1, 1)
︸                   ︷︷                   ︸

hR times

, (−1 : ∗)

do not appear.
(2) Forq odd, blocks of the form

(∗ : 1), (−1 : 1), . . . , (−1 : 1)
︸                     ︷︷                     ︸

hR times

do not appear.
(3) Forq odd, blocks of the form

(∗ : 1), (−1 : 1), . . . , (−1 : 1)
︸                     ︷︷                     ︸

hR−1 times

, (−1 : 2), (−1 : 1), . . . , (−1 : 1)
︸                     ︷︷                     ︸

hR times

, (−1, ∗)

do not appear.
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(4) Forq odd, a finite Rosenλ-fraction expansion does not terminate
in a block of the form

(∗ : 1), (−1 : 1), . . . , (−1 : 1)
︸                     ︷︷                     ︸

hR times

.

(5) The value±λq

2 of the tail [(∗ : r i), (εi+1 : r i+1), . . . , (εi+k : r i+k)] of a

finite Rosenλ-fractions leads because ofr i−1λq± λq

2 = (r i−1±1)λq∓
λq

2 to non-uniqueness of the expansion. We always choose the first
possibility.

Then one shows

L 6.1.3. The following three statements hold:

• Theλq-CF associated to a reduced Rosenλ-fraction expansion in
(6.1.2) is regular.
• The Rosenλ-fraction expansion corresponding to a regularλq-CF

in (6.1.3) satisfies Properties (1)–(4) of Definition6.1.2.
• The two expansions of the finite Rosenλ-fractions in (5) of Defini-

tion 6.1.2correspond to the identities of the finite regularλq-CF’s
in Lemma2.2.2.

P. Let x ∈ R have the regular Rosenλ-fraction expansion (6.1.1).
We have to show that the correspondingλq-CF in (6.1.2) does not contain
any forbidden block fromBq. We consider the casesq even andq odd
separately.

Let q be even. Using Lemma6.1.1and the identityhR = hq−1 in (6.1.4)
we see that Property (1) of Definition 6.1.2corresponds to the absence of
blocks of the form

[

(±1)hq,±m
]

for anym ∈ Z≥1.
Consider nextq odd. Using again Lemma6.1.1and the identityhR = hq

we see that Property (2) of Definition 6.1.2corresponds to the absence of
blocks of the form

[

(±1)hq+1]. Similarly, Property (3) corresponds to the
absence of blocks of the form

[

(±1)hq,±2, (±1)hq,±m
]

for anym∈ Z≥1.
This shows that no forbidden block fromBq appears in theλq-CF in

(6.1.2).

Next, letx ∈ R have the regularλq-CF x = [[a0; a1, a2, a3, . . .]]. We have
to show that the corresponding formal Rosenλ-fraction in (6.1.3) satisfies
properties (1)–(4) of Definition 6.1.2. Again, we discuss the casesq even
andq odd separately.

Consider firstq even. Using Lemma6.1.1and the identityhR = hq − 1
in (6.1.4) we find that forbidden blocks of the form

[

(±1)hq,±m
]

for any
m ∈ Z≥1 imply Property (1). Property5 corresponds just to the ambiguity
of finite λq-CF’s given in Lemma2.2.2since the tails

[

(±1)hq
]

correspond
to∓λq

2 .
Consider nextq odd. Using Lemma6.1.1 and recalling the identity

hR = hq in (6.1.4) we see that forbidden blocks
[

(±1)hq+1] imply Property (2)
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and Property (4) of Definition6.1.2. Property (2) also implies Property (1).
Property (3) follows from the forbidden blocks

[

(±1)hq,±2, (±1)hq,±m
]

and
for m ∈ Z≥1. The ambiguity of the regularλq-CF’s in Lemma2.2.2implies
Property (5).

To finish the proof of Lemma6.1.3considerq even and the finite regular
λq-CF [[a0; a1, . . . , an, (1)hq]]. Using Equation (6.1.3) we rewrite it as the
Rosenλ-fraction

[

a0; (−sign(a1) : |a1|), . . .
. . . , (−sign(an−1)sign(an) : |an|), (−sign(an) : 1), (−1 : 1)hq−1].

Since by the equation below (4.2) in [21] and by [1, (4)] the identity
[

0; (1 :
1), (−1 : 1)h−1] =

λq

2 holds, we are in the situation of Property (5). If an < 0
we choose the “+”-sign in Property (5). If an > 0 we use Lemma2.2.2to
rewrite the finite regularλq-CF such that its tail ends in

[

an−1, (−1)hq
]

with
sign(an − 1) = sign(an). Using Equation (6.1.3) we arrive at the Rosen
λ-fraction
[

a0; (−sign(a1) : |a1|), . . .
. . . , (−sign(an−1)sign(an − 1) : |an − 1|), (sign(an − 1) : 1), (−1 : 1)hq−1].

with the correct tail.
The caseq odd is analogous toq even, with the only difference that the

reduced Rosenλ-fraction λq

2 =
[

0; (1 : 1), (−1 : 1)hq−1, (−1 : 2), (−1, 1)hq
]

as
given in [1, (4)] has the corresponding tail

[

(1)hq, 2, (1)hq
]

. �

R 6.1.4. Consider theλq-CF of±rq in (2.3.2). Their correspond-
ing Rosenλ-fractions according to formula (6.1.2) are

rq =






[

0; (−1 : 1)hq−1, (−1 : 2), (−1, 1)hq−1] for q even and
[

0; (−1, 1), (−1 : 1)hq−1, (−1 : 2), (−1 : 1)hq−1, (−1 : 2), (−1, 1)
]

for q odd

and

−rq =






[0; (1 : 2), (−1 : 2)] for q = 4,

[0; (1 : 1), (−1 : 1)hq−2, (−1 : 2), (−1, 1)hq−1] for evenq ≥ 6,

[0; (1, 1), (−1 : 1)hq−1, (−1 : 2), (−1 : 1)hq−1, (−1 : 2), (−1, 1)]

for q odd,

where (−1 : 1)0 means that the digit (−1 : 1) is absent. The Rosenλ-
fractions hence have the same tail.

R 6.1.5. The generating mapf ⋆q for the dual regularλq-CF and
the generating mapf R

q for the Rosenλ-fractions in [1] satisfy

f ⋆q (−x) =
1
x
− λq



1

xλq +
Rq

2


=

1
x
− λq



1

xλq + 1+ rq

2

 = f R
q (x)
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for all x ∈
(

0, λq

2

)

.
Formally, we find also

f ⋆q (−x) =
1
x
− λq



1

xλq +
Rq

2


=

1
x
− λq



1

xλq + 1+ rq

2

 = T− r
λq

(x)

for all x ∈
(

0, λq

2

)

whereTα is the generating map of theα-Rosen fractions

discussed in [5]. However, the parameterα = − rq

λq
lies outside the rangeα ∈

[
1
2,

1
λq

]

discussed in [5], since by (2.3.2) and (2.3.8) −rq = λq − Rq ∈
(

0, λq

2

)

.

6.2. Regularλq-CF’s and convergents.We define thenth convergent
in the following way:

D 6.2.1. Given a regularλq-CF [[a0; a1, . . . , an, . . .]] of length at
leastn we define itsnth convergentas the fractionpn

qn
where the numerator

pn and denominatorqn are given as entries in the vector

(6.2.1)

(

pn

qn

)

= Ta0
q S Ta1

q S Ta2
q · · · S Tan

q

(

0
1

)

.

The convergents then satisfy the recursion relation

(6.2.2)

(

pn

qn

)

=

(

pn−2 pn−1

qn−2 qn−1

)

S Tan
q

(

0
1

)

=

(

anλq pn−1 − pn−2

anλq qn−1 − qn−2

)

which holds also forn = 0 andn = 1 if we definep−1 = 1, p−2 = 0, q−1 = 0
andq−2 = −1.

R 6.2.2. In the caseq = 3 Definition6.2.1of thenth convergent
coincides with the usual definition as the ratiopn

qn
= [[a0; a1, a2, . . . , an]],

since

[[a0; a1, a2, . . . , an]] =

(

∗ pn

∗ qn

)

0

where the last expression is to be understood as a Möbius transformation.

The following lemma will show that regularλq-CF’s are indeed well
defined and determine real numbers. This obviously is true for finite regular
λq-CF’s.

L 6.2.3.Let [a0; a1, a2, . . .] be an infinite regularλq-CF and denote
by pn

qn
it’s nth convergent. Then for q≥ 4 the fraction sign(qn) pn

|qn| is the nth

convergent of the corresponding reduced Rosenλ-fraction as defined in[21,
Definition 3]; for q = 3 the fractionpn

qn
is a “Näherungsbruch” in the sense

of Hurwitz[8, §2].

P. The caseq = 3 has been shown in [8].
Hence assumeq ≥ 4. Since the regularλq-CF is infinite, we don’t have

the ambiguities in Lemma6.1.3. which shows that the corresponding Rosen
λ-fraction

[a0; (−sign(a1) : |a1|), (−sign(a1)sign(a2) : |a2|), . . .]
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is reduced. Thenth convergentPn

Qn
of the reduced Rosenλ-expansion is well

defined and satisfiesQn ≥ 1 by [21, Lemma 4]. We have

Pn

Qn
= [a0; (−sign(a1) : |a1|), (−sign(a1)sign(a2) : |a2|), . . . ,

. . . , (−sign(an−1)sign(an) : |an|)]

= [a0; a1, a2, . . . , an] =
pn

qn

with pn andqn satisfying (6.2.1). Hence we find indeedPn = sign(qn) pn

andQn = |qn|. �

This lemma shows that the results on convergents in [21] hold also for
the regularλq-CF’s. We collect the relevant results in [21] and [8] in the
following

L 6.2.4. The convergentspn

qn
of an infinite regularλq-CF satisfy:

• qn , 0 and |qn| ≥ |qn−1|. For q= 3 we have|qn| > |qn−1|.
• limn→∞ |qn| → ∞.
• The sequence

(
pn

qn

)

n∈N
is a Cauchy sequence.

P. This follows from Lemma 4, Lemma 5, Theorem 4 and the proof
of Theorem 5 in [21] for q ≥ 4 and forq = 3 from§2 and§3 in [8]. �

Now we can (re-)define infinite regularλq-CF’s in the following way:
Let [[a0; a1, a2, . . .]] be a regularλq-CF. We assign the valuex to the regu-
lar λq-CF expansion and writex = [[a0; a1, a2, . . .]] where x is the limit of
the sequence of convergents (see Definition6.1.4and Lemma6.2.4) of the
corresponding Rosenλ-fraction.

Then the following estimate for the approximation ofx by the conver-
gents holds:

L 6.2.5. Let [[a0; a1, a2, . . .]] be an infinite regularλq-CF and de-
note its nth convergents bypn

qn
. There exists a constantκq > 0, independent

of x, such that
∣
∣
∣
∣
∣
x− pn

qn

∣
∣
∣
∣
∣
≤ 1
κqq2

n

holds for all n.

P. The lemma follows forq ≥ 4 from Theorem 4.6 in [1] and for
q = 3 from Satz on page 383 in [8]. �

R 6.2.6. Obviously, Lemma6.2.5implies that infinite regularλq-
CF’s converge. This gives another proof of part of Proposition2.2.1.
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